REHVA-ine smernice za COVID-19 Način rada i korišćenja sistema za KGH u zgradama radi sprečavanja širenja koronavirusne bolesti (COVID-19) – (SARS-CoV-2) na radnim mestima. Ovim dokumentom su ažurirane verzije od 17. marta i 3. aprila, a nova ažuriranja slediće po potrebi.

##plugins.themes.bootstrap3.article.main##

Redakcija časopisa

Apstrakt

U ovom dokumentu REHVA daje pregled smernica za rad i korišćenje sistema za KGH u zgradama u oblastima u kojima je izbila epidemija koronavirusne bolesti (COVID-19), radi sprečavanja širenja COVID-19 koje zavisi od faktora koji se odnose na sisteme za grejanje, ventilaciju i klimatizaciju ili vodovodne instalacije. Smernice su privremene; ovaj dokument će moguće biti dopunjivan novim informacijama i dokazima kada budu dostupni.

##plugins.themes.bootstrap3.article.details##

Kako citirati
ČASOPISA, Redakcija. REHVA-ine smernice za COVID-19. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 49, n. 3, p. 249-259, sep. 2020. ISSN 2560-340X. Dostupno na: <http://izdanja.smeits.rs/index.php/kgh/article/view/6076>. Datum pristupa: 24 oct. 2020
Sekcija
REHVA - KGH info

Reference

[1] Monto, 1974. Medical reviews. Coronaviruses. The Yale Journal of Biology and Medicine 47(4): 234251.
[2] Doremalen et al, 2013. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. European communicable disease bulletin 18(38): 1–4.
[3] Ijaz et al, 1985. Survival Characteristics of Airborne Human Coronavirus 229E. Journal of General Virology 66(12): 2743-2748.
[4] Casanova et al, 2010. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces. Applied and Environmental Microbiology 76(9): 2712-2717
[5] Doremalen et al, 2020. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med 2020; 382:1564-1567. DOI: 10.1056/NEJMc2004973
[6] Li et al, 2005a. Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air 15(2): 83-95.
[7] Li et al, 2005b. Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens. Indoor Air 15(2): 96-111.
[8] Luongo et al, 2016. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air 25(6): 666-678.
[9] Li et al, 2007. Role of ventilation in airborne transmission of infectious agents in the built environment – a multidisciplinary systematic review. Indoor Air 17(1): 2-18.
[10] Xie et al, 2007. How far droplets can move in indoor environments – revisiting the Wells evaporation-falling curve. Indoor Air 2007; 17: 211-225.
[11] Nicas et al, 2005. Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. Journal of Occupational and Environmental Hygiene, 2: 143-154.
[12] Liu et al, 2017. Short-range airborne transmission of expiratory droplets between two people. Indoor Air 2017; 27: 452-462, https://doi.org/10.1111/ina.12314
[13] Nielsen V. P., et al. 2008. Contaminant flow in the microenvironment between people under different ventilation conditions. SL-08-064, ASHRAE Transactions, 632-638.
[14] *** WHO, COVID-19 technical guidance: Guidance for schools, workplaces & institutions
[15] *** Japanese Ministry of Health, Labour and Welfare. Q & A on novel coronavirus (for general public)
[16] Nishiura et al, 2020. medRxiv, https://doi.org/10.1101/2020.02.28.20029272
[17] Li et al, 2020. Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant. Preprint, https://doi.org/10.1101 /2020.04.16.20067728
[18] Miller et al, 2020. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Preprint https://doi.org/10.1101/2020.06.15.20132027
[19] Allen and Marr, 2020. Re-thinking Potential for Airborne Transmission of SARS-CoV-2. Preprints 2020, 2020050126 (doi: 10.20944/preprints202005.0126.v1)
[20] Morawska et al, 2020. How can airborne transmission of COVID-19 indoors be minimised? Environment International,142. https://doi.org/10.1016/i.envint.2020.105832
[21] ECDC 2020a. Heating, ventilation and air-conditioning systems in the context of COVID-19. European Centre for Disease Prevention and Control, Technical report, 22 June 2020. https://www.ecdc.europa.eu/en/publications-data/heating-ventilation-air-conditioning-systemscovid-19
[22] *** Robert-Koch-Institut, 2020.
[23] *** https://www.rki.de/DE/Content/InfAZ/N/Neuartiges Coronavirus/Steckbrief.html
[24] Morawska and Milton, et al, 2020. It is Time to Address Airborne Transmission of COVID-19. Clinical Infectious Diseases.10.1093/cid/ciaa939. https://doi.org/10.1093/cid/ciaa939
[25] *** WHO, 2020d. Transmission of SARS-CoV-2: implications for infection prevention precautions. Scientific Brief, 9 July 2020. https://www.who.int/publications/ kgh 3/2020 259 ilitem/modes-of-transmission-of- virus-causing-covid-19-implications-for-ipc-precaution-recommendations
[26] *** US CDS press release: https://www.cdc.gov/media/releases/2020/s0522-cdc-updates-covid- transmission.html
[27] *** WHO, 2020b. Water, sanitation, hygiene and waste management for COVID-19. World Health Organization, Geneve.
[28] Hung, 2003. The SARS epidemic in Hong Kong: what lessons have we learned? Journal of the Royal Society of Medicine 96(8): 374-378.
[29] *** WHO, 2020a. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). World Health Organization, Geneve.
[30] Zhang et al, 2020. Molecular and serological investigation of 2019– nCoV infected patients: implication of multiple shedding routes. Emerging Microbes & Infections 9(1): 386-389.
[31] Guan W-J et al, 2020. Clinical characteristics of 2019 novel coronavirus infection in China. l J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032.
[32] Wenzhao et al, 2020. Short-range airborne route dominates exposure of respiratory infection during close contact. Building and Environment 176 (2020) 106859.
[33] Fennelly KP, 2020. Particle sizes of infectious aerosols: implications for infection control.
[34] Lancet Respir Med 2020. https://doi.org/10.1016/S2213-2600(20)30323-4
[35] *** US CDS 2015. Hierarchy of Controls. Centers for Disease Control and Prevention.
[36] Chin et al, 2020. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe. https://doi.org/10.1016/S2666-5247(20)30003-3
[37] Doremalen et al, 2020. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV– 1. N Engl J Med 2020; 382:1564-1567. DOI: 10.1056/NEJMc2004973
[38] Morawska, 2006. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16(2): 335-347.
[39] Salah et al, 1988. Nasal mucociliary transport in healthy subjects is slower when breathing dry air. European Respiratory Journal 1(9): 852-855.
[40] Kudo et al, 2019. Low ambient humidity impairs barrier
function and innate resistance against influenza infection. PNAS: 1 -6
[41] Milton et al, 2001. Risk of Sick Leave Associated with Outdoor Air Supply Rate, Humidification, and Occupant Complaints. Indoor Air 2001. https://doi.org/10.1034/j. 1600-0668.2000.010004212.x
[42] *** ISO 17772-1:2017 and EN 16798-1:2019
[43] Han et al, 2005. An Experimental Study on Air Leakage and Heat Transfer Characteristics of a Rotary-type Heat Recovery Ventilator. International Journal of Air-Conditioning and Refrigeration 13(2): 83-88.
[44] Carlsson et al, 1995. State of the art Investigation of rotary air-to-air heat exchangers. SP Sveriges Provningsoch Forskningsinstitut, Energiteknik (Energy Engineering) SP RAPPORT 1995:24.
[45] Ruud, 1993. Transfer of Pollutants in Rotary Air-to-air Heat Exchangers, A Literature Study/ State-of-the-art Review. SP Sveriges Provnings– och Forskningsinstitut (The Swedish National Testing and Research Institute) Energiteknik (Energy Engineering) SP RAPPORT 1993:03
[46] Wargocki, P., & Faria Da Silva, N. A. (2012). Use of CO2 feedback as a retrofit solution for improving air quality in naturally ventilated classrooms. Healthy Buildings, Brisbane, Australia.
[47] Sipolla MR, Nazaroff WW, 2003. Modelling particle loss in vwntilation ducts. Atmospheric Environment. 37(39-40): 5597-5609.
[48] Fisk et al, 2002. Performance and costs of particle air filtration technologies. Indoor Air 12(4): 223-234. https://doi.Org/10.103 /i.1600-0668.2002.01136.x
[49] Best et al, 2012. Potential for aerosolization of Clostridium difficile after flushing toilets: the role of toilet lids in reducing environmental contamination risk. The Journal of hospital infection 80(1 ):1-5.
[50] La Mura et al, 2013. Legionellosis Prevention in Building Water and HVAC Systems. REHVA GB 18.
[51] *** https://www.hse.gov.uk/coronavirus/legionellarisks-during-coronavirus-outbreak.htm
[52] *** CIBSE 2020, https://www.cibse.org/coronavirus-covid-19/emerging-from-lockdown
[53] *** ECDC 2020b, https://www.ecdc.europa.eu/en/legionnaires-disease
[54] *** ESCMID 2017, *** https://www.escmid.org/fileadmin/src/media/PDFs/3Research Projects/ESGLI/ESGLI EuropeanTechnical Guidelines for the Prevention Control and Investigation of Infections Caused by Legio nella species June 2017.pdf

Najčitanije od istog autora

1 2 3 4 5 6 > >>