Intenzitet izmene vazduha kao jedini pokazatelj efektivnosti sistema za distribuciju vazduha u cilju smanjivanja vazduhom izazvanog prenosa zaraznih bolesti putem kašlja u prostoriji sa plafonskom mešajućom ventilacijom: studija slučaja

##plugins.themes.bootstrap3.article.main##

Jovan Pantelić Kwok Wai Tham

Apstrakt

U unutrašnjim sredinama sa značajnim rizikom od prenošenja zaraznih bolesti vazduhom, broj
izmena vazduha u prostoriji se obično koristi kao jedini pokazatelj performansi rada sistema za
dovod vazduha. Ako se pretpostavi da je unutrašnja sredina homogena sa stanovišta zagađivača,
inditaktor broja izmena vazduha ukazuje na to da će povećanje protoka ubacnog vazduha
proporcionalno smanjiti rizik prenošenja zaraznih bolesti vazduhom. Rezultati dobijeni iz nedavnih
studija o širenju infektivnih vazduhom prenosivih čestica kašlja koje su sprovedene u komori za
ispitivanje uslova sredine (FEC – field environmental chamber) na Nacionalnom univerzitetu u
Singapuru, ukazuju da povećanje protoka ubacnog vazduha može izazvati povećanje rizika za
prenošenje zaraze vazduhom za nekoliko položaja osobe koja kašlje i osetljive osobe u odnosu na
rešetke za dovodni i odvodni vazduh. Metoda merenja brzine fotogramom čestica korišćena je
za ispitivanje polja vazdušnog strujanja, a brojač čestica u vazduhu Grimm 1.108 korišćen je za
merenje koncentracije kapljica u FEC komori. Rezultati te studije ukazuju da lokalno vazdušno
strujanje predstavlja važan faktor koji utiče na raspršivanje čestica kašlja i na koncentraciju virusa
koja može da se unese u pluća udisanjem tog vazduha. Pokazano je da povećanje protoka ubacnog
vazduha može da dovede do povećanja koncentracije virusa u zoni disanja, koje se disanjem može
uneti u pluća. To podrazumeva da broj izmena vazduha ne bi trebalo koristiti kao jedini pokazatelj
efikasnosti sistema za dovod vazduha da smanji koncentraciju virusa u zoni disanja.

##plugins.themes.bootstrap3.article.details##

Kako citirati
PANTELIĆ, Jovan; THAM, Kwok Wai. Intenzitet izmene vazduha kao jedini pokazatelj efektivnosti sistema za distribuciju vazduha u cilju smanjivanja vazduhom izazvanog prenosa zaraznih bolesti putem kašlja u prostoriji sa plafonskom mešajućom ventilacijom: studija slučaja. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 49, n. 3, p. 269-279, sep. 2020. ISSN 2560-340X. Dostupno na: <http://izdanja.smeits.rs/index.php/kgh/article/view/6078>. Datum pristupa: 24 oct. 2020
Sekcija
Tematski članci

Reference

[1] *** ASHRAE. 2007. ASHRAE/ANSI Standard 62.1, Ventilation for Acceptable Indoor Air Quality. Atlanta: ASHRAE.
[2] Beggs, C. B., K. G. Kerr, C. J. Noakes, E. A. Hathway, P. A. Sleigh, 2008. The ventilation of multiple-bed hospital wards: Review and analysis. American Journal of Infection Control 36(4): 250–9.
[3] Bolashikov, Z. D., A. K. Melikov, 2009. Methods for air cleaning and protection of building occupants from airborne pathogens. Building and Environment 44(7):1378– 85.
[4] Bolashikov, Z. D., A. K. Melikov, 2011. Exposure to exhaled air from a sick occupant in a two-bed hospital room with mixing ventilation: effect of distance from sick occupant and air change rate. Proceeding of Indoor Air 2011, Austin, TX , USA.
[5] Bolashikov, Z. D., A. K. Melikov, W. Kierat, Popio-Lek, Z., M. Brand, 2012. Exposure of healthcare workers and occupants to coughed airborne pathogens in a double-bed hospital room with overhead mixing ventilation. HVAC&R Research 18:602–15.
[6] *** Centers for Disease Control and Prevention. 2013. FluView. Atlanta, GA: Centers for Disease Control and Prevention.
[7] *** Centers for Disease Control and Prevention; Healthcare Infection Control Practices Advisory Committee. (2003). Guidelines for environmental infection control in health-care facilities. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.
[8] Cermak, R., A. K. Melikov, 2007. Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation. HVAC&R Research 13:23–38.
[9] Chao, C. Y. H., M. P. Wan, 2006. A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach. Indoor Air 16(4):296–312.
[10] Chao, C. Y. H., M. P. Wan, L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, Y. Li, X. Xie, D. Katoshevski, 2009. Characterization of expiratory air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science 40:122–33.
[11] Chao, C. Y. H., M. P. Wan, G. N. Szeto, 2008. Transport and removal of expiratory droplets in hospital ward environment. Aerosol Science and Technology 42:377–94.
[12] Chen, C., B. Zhao, 2010. Some questions on dispersion
of human exhaled droplets in ventilation room: Answers
from numerical investigation. Indoor Air 20:95–111.
[13] Chen, S. C., C. M. Liao, 2008. Modeling control measures to reduce the impact of pandemic influenza among schoolchildren. Epidemiology Infect 136:1035–45.
[14] Cheng, Y. H., C. M. Liao, 2013. Modeling control measure effects to reduce indoor transmission of pandemic Influenza H1N1 2009 virus. Building and Environment 63:11–19.
[15] Decker, J., 1995. Evaluation of isolation rooms in health care settings using tracer gas analysis. Applied Occupational Environmental Hygiene 10(11):887–91.
[16] Duguid, J., 1946. The size and duration of air-carriage of respiratory droplets and droplet nuclei. The Journal of Hygiene 4:471–80.
[17] Eames, I., J. W. Tang, Y. Li, P. Wilson, 2009. Airborne transmission of disease in hospitals. Journal of the Royal Society 6(6):S697–702.
[18] Etheridge, D., M. Sandberg, 1996. Building ventilation: Theory and measurement. New York: John Willey & Sons.
[19] Fadeyi, M. O., K. W. Tham, 2009. Airflow and leakage measurements in a field environmental chamber that has three supply air modes and with ventilation system recirculating larger percentage of its air. Proceedings of Room Vent 2009, May 24–27, Busan, South Korea.
[20] First, W. M., E. A. Nardell, W. Chaisson, R. Riley, 1999. Guidelines for the application of upper-room ultraviolet germicidal irradiation for preventing transmission of airborne contagion – Part I: Basic principles. ASHRAE Transactions 105:869–76.
[21] Fraser, C., W. Riley, R. M. Anderson, N. M. Ferguson, 2004. Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Science 101:6146–51.
[22] Hanzawa, H., A. K. Melikov, P. O. Fanger, 1987. Airflow characteristics in the occupied zone of ventilated spaces. ASHRAE Transactions 93:524–39.
[23] Hinds, W. C, 1999. Aerosol technology. New York: John Wiley & Sons.
[24] Holmgren, H., B. Bake, A. K. Olin, E. Ljungstrom, 2011. Relation between humidity and size distribution of exhaled particles. Journal of Aerosol Medicine and Pulmonary Drug Delivery 24:253–60.
[25] *** Insight 3G Software Manual. 2009. TSI Incorporated, Shoreview, MN.
[26] Kao, P. H., R. J. Yang, 2006. Virus diffusion in isolation rooms. Journal of Hospital Infection 62:338–45.
[27] Kaushal, V., P. S. Saini, A. K. Gupta, 2004. Environmental control including ventilation in hospitals. JK Science 6(4):229–32.
[28] Kowalski, W. J., W. Bahnfleth, T. S. Whittam, 1999. Filtration of airborne microorganisms: Modeling and prediction. ASHRAE Transactions: Research 105(2):4–17.
[29] Levy, B. S., D. H. Wegman, S. L. Barron, R. K. Sokas, 2005. Occupational health: Recognizing and preventing work-related disease and injury. Philadelphia: Lippincott Williams & Wilkins.
[30] Li, Y., M. G. Leung, J. W. Tang, X. Yang, C. Y. H. Chao, J. Z. Lin, J. W. Lu, P. V. Nielsen, J. Niu, H. Qian, A. Sleigh, H. J. Su, J. Sundell, T. W. Wong, P. L. Yuen, 2007. Role of ventilation in the airborne transmission of infectious agents in the built environment – A multidisciplinary systematic review. Indoor Air 17:2–18.
[31] Melikov, A. K, 2004. Personalized ventilation. Indoor Air 14:157–67.
[32] Milton, D. K., P. M. Fabian, B. J. Cowling, M. J. Grantham,
J. J. McDe-vitt, 2013. Influenza virus aerosol in
human exhaled breath: Particle size, culturability, and
effect of surgical masks. PLoS Pathogens 9(3):e1003205.
[33] Morawska, L., 2006. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16:335–47.
[34] Nicas, M., W. Nazaroff, A. Hubbard, 2005. Towards understanding the risk of secondary airborne infection: emission of respirable pathogens. Journal of Occupational and Environmental Hygiene 2(3):143–54.
[35] Nielsen, P. V., Y. Li, Y. Buus, F. V. Winther, 2010. Risk of cross-infection in a hospital ward with downward ventilation. Building and Environment 45:2008–14.
[36] Noakes, C., L. A. Fletcher, P. A. Sleigh, W. A. Booth, B., Beato-Arribas, B., N. Tomlinson, 2009. Comparison of tracer techniques for evaluating the behavior of bioaerosols in hospital isolation rooms. Proceedings of Healthy Buildings, Syracuse, NY , September 13–17, Paper # 504.
[37] Pantelic, J., 2010. Exposure generated by cough released droplets in the indoor environment – A comparison among four ventilation systems. PhD thesis, National University of Singapore, Singapore.