Kontinualna evaluacija kvaliteta unutrašnje sredine

##plugins.themes.bootstrap3.article.main##

Igor Mujan Aleksandar Anđelković

Apstrakt

Trendovi u projektovanju objekata teže ka minimalnoj potrošnji energije kao osnovnom cilju. Međutim, povećanje energetske efikasnosti može ugroziti zdravlje i dobrobit ljudi snižavanjem kvaliteta životnog okruženja u zatvorenom prostoru (KUS). Trenutne procedure za ocenjivanje KUS-a su često sporadične, skupe, nametljive i ograničene samo stručnjacima. Rad predstavlja ENVIRA – novu niskobudžetnu platformu za kontinuirano merenje i procenu KUS. Dalje se predstavlja metodologija za integraciju relevantnih KUS parametara u ukupni KUS indeks kroz izvođenje njihovih težinskih koeficijenata. Dobijeni rezultati su zasnovani na tri terenske studije u kojima su fizička merenja KUS poređena sa anketama. Dobijeni rezultati sugerišu da se platforma ENVIRA može koristiti za generisanje velikih KUS skupova podataka za istraživače i praktičare. Rezultati takođe pokazuju da pojedinačni težinski koeficijenti nisu ekvivalentni i da se mogu razlikovati u zavisnosti od tipova objekata.

##plugins.themes.bootstrap3.article.details##

Kako citirati
MUJAN, Igor; ANĐELKOVIĆ, Aleksandar. Kontinualna evaluacija kvaliteta unutrašnje sredine. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 51, n. 1, p. 103-112, feb. 2022. ISSN 2560-340X. Dostupno na: <http://izdanja.smeits.rs/index.php/kgh/article/view/6728>. Datum pristupa: 25 june 2022
Sekcija
Tematski članci

Reference

al Horr, Y., Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., & Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, 105, 369–389. https://doi.org/10.1016/j.buildenv.2016.06.001
Mujan, I., Anđelković, A. S., Munćan, V., Kljajić, M., & Ružić, D. (2019). Influence of indoor environmental quality on human health and productivity – A review. Journal of Cleaner Production, 217, 646–657. https://doi.org/10.1016/j.jclepro.2019.01.307
Fassio, F., Fanchiotti, A., & de Lieto Vollaro, R. (2014). Linear, non-linear and alternative algorithms in the correlation of IEQ factors with global comfort: A case study. Sustainability (Switzerland), 6(11), 8113–8127. https://doi.org/10.3390/su6118113
Wei, W., Wargocki, P., Zirngibl, J., Bendžalová, J., & Mandin, C. (2020). Review of parameters used to assess the quality of the indoor environment in Green Building certification schemes for offices and hotels. Energy and Buildings, 209, 109683. https://doi.org/10.1016/j.enbuild.2019.109683
Ali, A. S., Zanzinger, Z., Debose, D., & Stephens, B. (2016). Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment, 100, 114–126. https://doi.org/10.1016/j.buildenv.2016.02.010
Jin, M., Liu, S., Schiavon, S., & Spanos, C. (2018). Automated mobile sensing: Towards high-granularity agile indoor environmental quality monitoring. Building and Environment, 127(August 2017), 268–276. https://doi.org/10.1016/j.buildenv.2017.11.003
Karami, M., Mcmorrow, G. V., & Wang, L. (2018). Continuous Monitoring of Indoor Environmental Quality using an Arduino-based Data Acquisition System Continuous Monitoring of Indoor Environmental Quality using an Arduino– based Data Acquisition System. Journal of Building Engineering, 19(January), 412–419. https://doi.org/10.1016/j.jobe.2018.05.014
Li, J., Li, H., Ma, Y., Wang, Y., Abokifa, A. A., Lu, C., & Biswas, P. (2018). Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network. Building and Environment, 127(November 2017), 138–147. https://doi.org/10.1016/j.buildenv.2017.11.001
Scarpa, M., Ravagnin, R., Schibuola, L., & Tambani, C. (2017). Development and testing of a platform aimed at pervasive monitoring of indoor environment and building energy. Energy Procedia, 126, 282–288. https://doi.org/10.1016/j.egypro.2017.08.155
Parkinson, T., Parkinson, A., & de Dear, R. (2015). Introducing the SAMBA indoor environmental quality monitoring system. Living and Learning: Research for a Better Built Environment, 49th International Conference of the Architectural Science Association, Gbca, 1139–1148. http://anzasca.net/2015-conference-papers/
Parkinson, T., Parkinson, A., & de Dear, R. (2019). Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Building and Environment, 149(December 2018), 241–252. https://doi.org/10.1016/j.buildenv.2018.12.016
*** EN 16798-1 Energy performance of buildings – Ventilation for buildings – Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, Cen 18 (2019).
Wargocki, P., Mandin, C., & Wei, W. (2019). Aldren-Tail index for rating IEQ. ASHRAE Journal, 61(12), 66–68.
Chiang, C. M., Chou, P. C., Lai, C. M., & Li, Y. Y. (2001). A methodology to assess the indoor environment in care centers for senior citizens. Building and Environment, 36(4), 561–568. https://doi.org/10.1016/S0360-1323(00)00024-X
Wong, L. T., Mui, K. W., & Hui, P. S. (2008). A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Building and Environment, 43(1), 1–6. https://doi.org/10.1016/j.buildenv.2007.01.001
Piasecki, M., Kostyrko, K., & Pykacz, S. (2017). Indoor environmental quality assessment: Part 1: Choice of the indoor environmental quality sub-component models. Journal of Building Physics, 41(3), 264–289. https://doi.org/10.1177/1744259117702882
Buratti, C., Belloni, E., Merli, F., & Ricciardi, P. (2018). A new index combining thermal, acoustic, and visual comfort of moderate environments in temperate climates. Building and Environment, 139(April), 27–37. https://doi.org/10.1016/j.buildenv.2018.04.038
Cao, B., Ouyang, Q., Zhu, Y., Huang, L., Hu, H., & Deng, G. (2012). Development of a multivariate regression model for overall satisfaction in public buildings based on field studies in Beijing and Shanghai. Building and Environment, 47(1), 394–399. https://doi.org/10.1016/j.buildenv.2011.06.022
Ncube, M., & Riffat, S. (2012). Developing an indoor environment quality tool for assessment of mechanically ventilated office buildings in the UK – A preliminary study. Building and Environment, 53, 26–33. https://doi.org/10.1016/j.buildenv.2012.01.003
*** ASHRAE. (2012). Performance measurement protocols for commercial buildings: best practices guide.
Kim, H., & Haberl, J. S. (2012). Field-test of the new ASHRAE/CIBSE/USGBC performance measurement protocols for commercial buildings: Basic level. ASHRAE Transactions, 118(PART 1), 135–142.
Mihai, T., & Iordache, V. (2016). Determining the Indoor Environment Quality for an Educational Building. Energy Procedia, 85(November 2015), 566–574. https://doi.org/10.1016/j.egypro.2015.12.246
*** BREEAM. (2017). Building Research Establishment Environmental Assessment Method. http://www.breeam.com/%5Cnhttp://www.breeam.org/about.jsp?id=66
*** LEED reference guide for building design and construction, 1 U.S. Green Building Council 90 (2019).
*** Deutsche Gesellschaft für nachhaltiges Bauen gegründet, 84 Bautechnik 602 (2007). https://doi.org/10.1002/bate.200790183
*** ASHRAE. (2017). Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard – 55, 7(55), 6.
*** ISO. (2005). ISO 7730: Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management, 3, 605–615. https://doi.org/10.1016/j.soildyn.2004.11.005
Fanger, P. O. (1970). Thermal Comfort.
*** WHO. (2010). World Health Organization – WHO guidelines for indoor air quality: selected pollutants. In WHO Guidelines (Vol. 9).
Jokl, M. V. (2000). Evaluation of indoor air quality using the decibel concept based on carbon dioxide and TVOC. In Building and Environment (Vol. 35, Issue 8, pp. 677–697). https://doi.org/10.1016/S0360-1323(99)00042-6
Hansen, H. H. (2017). Guidelines for ventilation requirements in buildings. 11.
*** German federal environment agency. (2018). Fuide values I and II. German committee on indoor guide values. www.umweltbundesamt.de/en/topics/health/commissions-working-groups/german-committee-on-indoor-guide-values
*** United States Environmental Protection Agency. (2012). The National Ambient Air Quality Standards for Particle Matter: Revised Air Quality Standards for Particle Pollution and Updates to the Air Quality Index (AQI). Environmental Protection Agency, 1–5.
Kruisselbrink, T., Dangol, R., & Rosemann, A. (2018). Photometric measurements of lighting quality: An overview. Building and Environment, 138(April), 42–52. https://doi.org/10.1016/j.buildenv.2018.04.028
*** European committee for standardization. (2011). BSI Standards Publication Light and lighting — Lighting of work places Part 1 : Indoor work places. 1–57.
*** Illuminating Engineering Society. (2013). The Lighting Handbook – 10th Edition.
Mui, K. W., & Wong, L. T. (2006). Acceptable illumination levels for office occupants. Architectural Science Review, 49(2), 116–119. https://doi.org/10.3763/asre.2006.4915
*** World Health Organisation. (2018). Environmental Noise Guidelines for the European Region (2018).
*** As/Nzs 2107:2016, 24 (2016) (testimony of Architectural Joint Technical Committee AV-004 Acoustical).
*** ASHRAE. (2017). ASHRAE Handbook of Fundamentals.
Demanega, I., Mujan, I., Singer, B. C., Anđelković, A. S., Babich, F., & Licina, D. (2021). Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions. Building and Environment, 187. https://doi.org/10.1016/j.buildenv.2020.107415
Nižetić, S., Pivac, N., Zanki, V., & Papadopoulos, A. M. (2020). Application of smart wearable sensors in office buildings for modelling of occupants’ metabolic responses. Energy and Buildings, 226, 110399. https://doi.org/10.1016/j.enbuild.2020.110399