Instrukcije u zakonskim regulativama za potencijalno toksične metale u zemljištu kao (ne)obnovljivom prirodnom resursu

##plugins.themes.bootstrap3.article.main##

Slađana Alagić

Apstrakt


Iako esencijalni za sve žive organizme, gvožđe (Fe), mangan (Mn), bakar (Cu) i cink (Zn) mogu da postanu toksični ukoliko su u sferama životne sredine prisutni u povećanim koncentracijama, što ih je i definisalo kao - potencijalno toksične metale. Posebna opasnost može doći iz zemljišta kontaminiranog ovim metalima, zato što oni u zemljištu mogu da opstanu godinama, predstavljajući na taj način jednu konstantnu pretnju za sav živi svet, a naročito za zemljišne organizme, uključujući i biljke. Jestive biljke mogu dalje predstavljati jednu dodatnu opasnost za ljudsku populaciju zato što one mogu da akumuliraju značajne količine metala u svojim tkivima, a što u konačnom može rezultovati u toksičnim efektima kod ljudi koji koriste ovakve biljke u ishrani. U cilju zaštite ljudskog zdravlja i generalno – kompletne životne sredine, mnoge relevantne agencije i organizacije u svetu sprovele su različite procene rizika obezbeđujući veoma korisne informacije iz kojih su bile izvedene brojne kostruktivne preporuke. Ove preporuke su kasnije često bile ugrađivane u odgovarajuće zakonske regulative kao veoma praktična i vredna uputstva u zaštiti vode, vazduha i zemljišta. U ovom radu, prezentovane su neke od najvažnijih direktiva u odnosu na Fe, Mn, Cu, i Zn u zemljištu kao (ne)obnovljivom prirodnom resursu, razmatrajući primere iz američke, evropske i domaće, srpske regulative.


 

##plugins.themes.bootstrap3.article.details##

Kako citirati
ALAGIĆ, Slađana. Instrukcije u zakonskim regulativama za potencijalno toksične metale u zemljištu kao (ne)obnovljivom prirodnom resursu. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 7, n. 1, p. 31-35, dec. 2019. Dostupno na: <http://izdanja.smeits.rs/index.php/mkoiee/article/view/5925>. Datum pristupa: 10 july 2020
Sekcija
Plenarna predavanja

Reference

[1] Alloway, B.J., Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavaila-bility. Environmental Pollution (22). (3rd ed.). Springer Dordrecht Heidelberg New York London (2013)
[2] Sarma, H., Metal Hyperaccumulation in Plants: A Review Focusing on Phytoremediation Tech-nology. J Environ Sci Technol 4(2) (2011) pp. 118-138.
[3] Alagić, S.Č., Strategije biljaka u borbi protiv fitotoksičnih koncentracija metala kao ključni pre-duslov uspešne fitoremedijacije: Ćelijski mehanizmi, deo I/Plants strategies against metal phyto-toxicity as a key prerequisite for an effective phytoremediation: Cellular mechanisms, part I. Zaštita materijala, 55(3) (2014) 313-322.
[4] Bhaduri, A.M., Fulekar, M.H., Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11 (2012) 55–69.
[5] Rascio, N., Navari-Izzo, F., Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci 180 (2011) pp. 169-181.
[6] Kabata-Pendias, A., Pendias, H., Trace elements in soils and plants. (3rd ed.). CRC Press LLC, Boca Raton, Florida, USA (2001)
[7] Kabata-Pendias, A., Trace elements in soils and plants. (4th ed.). CRC Press, Taylor and Francis Group, LLC, Boca Raton, London, New York (2011)
[8] Lin, Y.-F., Aarts, M.G.M., The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69 (2012) pp. 3187–3206.
[9] Alagić, S.Č., Tošić, S.B., Dimitrijević, M.D., Antonijević, M.M., Nujkić, M.M., Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environ Sci Pollut R 22(9) (2015) pp. 7155-7175.
[10] Alagić, S.Č., Tošić, S.B., Dimitrijević, M.D., Petrović, J.V., Medić, D.V., The characteriza-tion of heavy metals in the grapevine (Vitis vinifera) cultivar Rkatsiteli and wild blackberry (Rubus fruticosus) from East Serbia by ICP-OES and BAFs. Commun Soil Sci Plan 47(17) (2016) pp. 2034-2045.
[11] Alagić, S.Č., Tošić, S.B., Dimitrijević, M.D., Nujkić, M.M., Papludis, A.D., Fogl, V.Z., The content of the potentially toxic elements, iron and manganese in the grapevine cv Tamjanika growing near the biggest copper mining/metallurgical complex on the Balkan peninsula: Phytore-mediation, biomonitoring and some toxicological aspects. Environ Sci Pollut R 25(34) (2018) pp. 34139-34154.
[12] de Vries, W., Groenenberg, J.E., Evaluation of approaches to calculate critical metal loads for forest ecosystems, Environ Pollut 157 (2009) 3422–3432.
[13] Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustos P, Zupan M, Wenzel WW, Heavy metal accumulation in trees growing on contaminated sites in Central Eu-rope. Environ Pollut 148 (2007) 107-114.
[14] Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366) (2002) pp. 1-11.
[15] The Official Gazette of the Republic of Serbia, No. 23/94. Regulation of allowable quantities of hazardous, and harmful substances in soil
[16] The Official Gazette of the Republic of Serbia, No. 88/2010, and 30/2018. The decree on the soil quality monitoring program using indicators for assessing the risks from the soil degradation as well as the methodology for working out the remediation program
[17] The Official Gazette of the Republic of Serbia, No. 30/2018. The decree on limit values of polluting, harmful, and hazardous substances in soil
[18] European Communities Council, 1986. Directive (86/278/EEC) on the protection of the envi-ronment, and in particular of the soil, when sewage sludge is used in agriculture, Off. J. Eur. Comm. L181/6 (1986). http://eur-lex.europa.eu/legal-con-tent/EN/TXT/PDF/?uri=CELEX:31986L0278&from=EN
[19] USEPA, 2018. United States Environmental Protection Agency (2018): Regional Screening Level, RSL Summary Table. November 2018. http://www2.epa.gov/risk/risk-based-screening-ta-ble-generic-tables