Sinteza srebrnih čestica veličine mikrometra primenjive za debelo filmne kontakte na solarnim ćelijama

##plugins.themes.bootstrap3.article.main##

Stevan Dimitrijević Silvana Dimitrijević Michele Miliciani Želko Kamberović Zara Cherkezova-Zheleva

Apstrakt

Glavni cilj studije bio je utvrditi parametre za proizvodnju srebrnog praha veličine oko jednog mikrometra, koji se može primeniti na paste koje se koriste u proizvodnji i održavanju solarnih ćelija. U svim eksperimentima korišćeni su rastvor srebro nitrata i askorbinske kiseline, kao izvor srebra, odnosno redukciono sredstvo. Polivinilpirolidon (PVP) i želatin su korišćeni kao disperzanti. Disperzant u ovom sistemu deluje kao zaštitno sredstvo na način da sprečava procese aglomeracije i agregacije. Uticaj korišćenih agenasa bio je različit, a jedan od ciljeva istraživanja bio je utvrditi njihove prednosti i nedostatke. Optimalni parametri sinteze bili su: temperatura rastvora od 45 °C, pH=7, koncentracija srebra i askorbinske kiseline od 45 g/l, odnosno 30 g/l. Iako se PVP pokazao pogodnim zaštitnim sredstvom za ciljeve studije, najbolji rezultati su dobijeni upotrebom želatina kao disperzanta u odnosu koncentracije prema srebrnim jonima od 2,5 mas. %.

##plugins.themes.bootstrap3.article.details##

Kako citirati
DIMITRIJEVIĆ, Stevan et al. Sinteza srebrnih čestica veličine mikrometra primenjive za debelo filmne kontakte na solarnim ćelijama. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 8, n. 1, p. 29-34, oct. 2020. Dostupno na: <http://izdanja.smeits.rs/index.php/mkoiee/article/view/6110>. Datum pristupa: 21 apr. 2021 doi: https://doi.org/10.24094/mkoiee.020.8.1.29.
Sekcija
Redovna izlaganja

Reference

[1] Wang, P. J., C. C. Lee, Silver joints between silicon chips and copper substrates made by di-rect bonding at low-temperature, IEEE Transactions on Components and Packaging Technol-ogies, 33 (2010), 1, pp. 10-15.
[2] Nitayaphat, W., T. Jintakosol, Removal of silver(I) from aqueous solutions by chi-tosan/bamboo charcoal composite beads, Journal of Cleaner Production, 87 (2015), (15 Janu-ary 2015), pp. 850–855.
[3] Gu, T., C. M. Gourlay, T. B. Britton, , Evaluating creep deformation in controlled micro-structures of Sn-3Ag-0.5Cu solder, Journal of Electronic Materials, 48 (2019), 1, pp. 107–121.
[4] Ardestani, M., Thermochemical synthesis and sintering of silver-8 wt.% copper oxide nano-composite powders, International Journal of Material Research, 106 (2015), 12, pp. 1294–1297.
[5] Pethkar, A. V., K. M. Paknikar, Thiosulfate biodegradation-silver biosorption process for the treatment of photofilm processing wastewater, Process Biochemistry, 38 (2003), 6, pp. 855-860. [6] Toscano, L. M., E. Long, A new surface finish for the electronics industry: Electroless nick-el/immersion silver, Proceedings 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), IEEE, Taipei, Taiwan, 2014.
[7] Vivekanandhan, S., L. Christensen, M. Misra, A. K. Mohanty, Green process for impreg-nation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionano-composite film, Journal of Biomaterials and Nanobiotechnology, 3 (2012), 3, pp. 371–376.
[8] Chen, Y, W. H. Tse, L. Chen, J. Zhang, Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties, Nanoscale Research Letters, 10 (2015), Article number: 106.
[9] Razack, S. A., S. Duraiarasan, M. Vijay, Biosynthesis of silver nanoparticle and its applica-tion in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel pro-duction, Biotechnology Reports 11 (2016), September 2016, pp. 70–76.
[10] Tanju, E., N. Atar, M L. Yola, H. Karimi-maleh, A. T. Çolak, A. Olgun, Facile and green fabrication of silver nanoparticles on a polyoxometalate for Li-ion battery, Ionics, 21 (2015), 8, pp. 2193–2199.
[11] Iravani, S., H. Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, Synthesis of silver na-noparticles: chemical, physical and biological methods, Research in Pharmaceutical Sciences, 9 (2014), 6, pp. 385–406.
[12] Singaravelan, R., S. B. S. Alwar, Electrochemical synthesis, characterisation and phytogen-ic properties of silver nanoparticles, Applied Nanoscience, 5 (2015), pp. 983–991.
[13] Srikar, S. K., D. D. Giri, D.B. Pal, P. K. Mishra, S. N. Upadhyay, Green synthesis of sil-ver nanoparticles: A Review, Green and Sustainable Chemistry, 6 (2016), 1, pp. 34–56.
[14] Ovais, M., A. T. Khalil, M. Ayaz, I. Ahmad, S.K. Nethi, S. Mukherjee, Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach, International journal of molecular sciences, 19 (2018), 12, 4100, 1–20.
[15] Demchenko, V., S. Riabov, S. Kobylinskyi, L. Goncharenko, N. Rybalchenko, A. Kruk, O. Moskalenko, M. Shut, Effect of the type of reducing agents of silver ions in interpolyelec-trolyte-metal complexes on the structure, morphology and properties of silver-containing nanocomposites, Scientific Reports 10 (2020), 7126.
[16] Zezin, A. A., Synthesis of hybrid materials in polyelectrolyte matrixes: control over sizes and spatial organization of metallic nanostructures, Polymer Science C, 58 (2016), 1, pp. 118–130.
[17] Venkata, R. K., K. V. Abhinav, P. S. Karthik, S. S. Prakash, Conductive silver inks and their applications in printed and flexible electronics, RSC Advances, 5 (2015), 95, pp. 77760–77790.
[18] Che, Q., H. Yang, L. Lu, Y. Wang, Nanoparticles-aided silver front contact paste for crys-talline silicon solar cells, Journal of Materials Science Materials in Electronics, 24 (2013), 2, pp. 524–528.
[19] Moudir, N., N. Moulaï-Mostefa, Y. Boukennous, Silver micro- and nano-particles obtained using different glycols as reducing agents and measurement of their conductivity, Chemical Industry & Chemical Engineering Quarterly, 22 (2016), 2, 227-234.
[20] Sannohe, K., T. Ma, S. Hayase, Synthesis of monodispersed silver particles: Synthetic tech-niques to control shapes, particle size distribution and lightness of silver particles, Advanced Powder Technology, 30 (2019), 12, pp. 3088–3098.
[21] Dimitrijević, S. P., Ž. Kamberović, M. Korać, Z. Anđić, S. B. Dimitrijević, N. Vuković, Influence of reducing agents and surfactants on size and shape of silver fine powder particles, Metallurgical and Materials Engineering, 20 (2014), 2, pp. 73–87.