Vetroturbine snage preko 20 MW – tehnološka perspektiva

##plugins.themes.bootstrap3.article.main##

Aleksandar Simonović Aleksandar Kovačević Toni Ivanov Miloš Vorkapić

Apstrakt

Trend razvoja vetroturbina ima poseban značaj u eksploataciji obnovljivih izvora energije. Vetroturbine velikog prečnika rotora i visokih tornjeva sve se više razmatraju u istraživačkim i razvojnim centrima širom sveta. Upotrebom vetroturbina na većim visinama gde je brzina vetra znatno veća ostvaruje se mogućnost boljeg iskorišćenja ovog obnovljivog izvora energije. Razvoj novih tehnologija otvara mogućnost za novu generaciju vetroturbina snage preko 20 MW. U poslednjih nekoliko godina razne studije izvodljivosti su pokazale da koncept vetroturbine velikog prečnika rotora koji se nalazi na visokim tornju daje pozitivne rezultate sa aspekta analize strukturalnih i aerodinamičkih parametara. Posebna pažnja posvećena je smanjenju ukupne mase i prigušenju vibracija korišćenjem novih materijala. U ovom radu prezentovan je razvoj vetroturbina velike snage, dat je pregled tehnoloških mogućnosti u proizvodnji osnovnih komponenti kao i perspektiva za realizaciju vetroturbina snage preko 20 MW.

##plugins.themes.bootstrap3.article.details##

Kako citirati
SIMONOVIĆ, Aleksandar et al. Vetroturbine snage preko 20 MW – tehnološka perspektiva. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 8, n. 1, p. 123-134, oct. 2020. Dostupno na: <http://izdanja.smeits.rs/index.php/mkoiee/article/view/6127>. Datum pristupa: 24 jan. 2021 doi: https://doi.org/10.24094/mkoiee.020.8.1.123.
Sekcija
Energija vetra

Reference

[1] Jacobson, M. Z., M. A. Delucchi, Z. A. Bauer, S. C. Goodman, W. E. Chapman, M. A. Cameron, J. R. Erwin, 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world, Joule, 1(2017), 1, pp. 108-121. [2] Web page: Global Wind Energy Council, Source: http://files.gwec.net/files/GWR2017.pdf
(Accessed 09.06.2020).
[3] Wang, Q, Effective policies for renewable energy - the example of China's wind power-lessons for China's photovoltaic power, Renewable and Sustainable Energy Reviews, 14(2010), 2, pp. 702-712.
[4] Ashuri, T., J. R. Martins, M. B. Zaaijer, G. A. van Kuik, G. J. van Bussel, Aeroservoelastic design definition of a 20 MW common research wind turbine model, Wind Energy, 19(2016), 11, pp. 2071-2087.
[5] Blaabjerg, F., K. Ma, Future on power electronics for wind turbine systems, IEEE Journal of emerging and selected topics in power electronics, 1(2013), 3, pp. 139-152.
[6] Jonkman, J., S. Butterfield, W. Musial, G. Scott, Definition of a 5-MW reference wind tur-bine for offshore system development (No. NREL/TP-500-38060), National Renewable Energy Lab., Golden, CO (United States), 2009.
[7] Bak, C., R. Bitsche, A. Yde, T. Kim, M. H. Hansen, F. Zahle, J.J. Wedel Heinen, T. Beh-rens, Light Rotor: The 10-MW reference wind turbine, Proceedings of the European Wind En-ergy Association (EWEA) Annual Event, EWEA, Copenhagen, Denmark, 2012.
[8] Zahle, F., C. Bak, N. N. Sørensen, S. Guntur, N. Troldborg, Comprehensive aerodynamic analysis of a 10 MW wind turbine rotor using 3D CFD, In 32nd ASME Wind Energy Symposi-um, ASME, National Harbor, Maryland (USA), 2014.
[9] Peeringa, J., R. Brood, O. Ceyhan, W. Engels, G. De Winkel, Upwind 20MW Wind Turbine Pre-Design (Paper No. ECN-E–11-017), ECN, Netherland, 2011.
[10]Jamieson, P., M. Branney, Multi-rotors; a solution to 20 MW and beyond?, Energy Procedia (Selected papers from Deep Sea Offshore Wind R&D Conference), EERA, Trondheim, Norway, 2012.
[11]Sieros, G., P. Chaviaropoulos, J. D. Sørensen, B. H. Bulder, P. Jamieson, Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy, Wind energy, 15(2012), 1, pp. 3-17.
[12]Hau, E., H. von Renouard, Wind turbines: fundamentals, technologies, application, econom-ics, Springer Science & Business Media, 2003, pp. 669-675.
[13]Lambe, A. B., J. R. Martins, Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes, Structural and Multidisciplinary Optimization, 46(2012), 2, pp.273-284.
[14]Mishnaevsky Jr, L., P. Brøndsted, R. Nijssen, D. J. Lekou, T. P. Philippidis, Materials of large wind turbine blades: recent results in testing and modeling. Wind Energy, 15(2012), 1, pp. 83-97.
[15]Lantz, E., Clean Energy Manufacturing: US Competitiveness and State Policy Strategies (Presentation) (No. NREL/PR-6A20-61265), National Renewable Energy Lab., Golden, CO (United States), 2014.
[16]Riddle, T., D. Cairns, J. Nelson, Characterization of manufacturing defects common to com-posite wind turbine blades: Flaw characterization. In 52nd AIAA/ASME/ASCE/AHS/ASC Struc-tures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Struc-tures Conference 13t, ASME, Denver, CO (United States), 2011.
[17]Lambert, J., A. R. Chambers, I. Sinclair, S. M. Spearing, 3D damage characterisation and the role of voids in the fatigue of wind turbine blade materials, Composites Science and Tech-nology, 72(2012), 2, pp. 337-343.
[18]Fingersh, L., M. Hand, A. Laxson, Wind turbine design cost and scaling model (No. NREL/TP-500-40566), National Renewable Energy Lab., Golden, CO (United States), 2006.
[19]Sung, H. J., G. H. Kim, K. Kim, M. Park, I. K. Yu, J. Y. Kim, Design and comparative analysis of 10 MW class superconducting wind power generators according to different types of superconducting wires, Physica C: Superconductivity, 494(2013), pp. 255-261.
[20]Hansen, L. H., P. H. Madsen, F. Blaabjerg, H. C. Christensen, U. Lindhard, K. Eskildsen, Generators and power electronics technology for wind turbines, In Industrial Electronics Socie-ty (The 27th Annual Conference of the IEEE), IEEE, Denver, CO (United States), 2001.
[21]Zhao, M., J. Ji, Dynamic analysis of wind turbine gearbox components. Energies, 9(2016), 2, pp.11
[22]Ding, F., Z. Tian, F. Zhao, H. Xu, An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions, Renewable Energy, 129(2018), pp. 260-270.
[23]Nejadkhaki, H. K., S. Chaudhari, J. F. Hall, A design methodology for selecting ratios for a variable ratio gearbox used in a wind turbine with active blades, Renewable Energy, 118(2018), pp. 1041-1051.
[24]Shanbr, S., F. Elasha, M. Elforjani, J. Teixeira, Detection of natural crack in wind turbine gearbox, Renewable Energy, 118(2018), pp. 172-179.
[25]Xu, X., P. Dong, Y. Liu, H. Zhang, Progress in Automotive Transmission Technology, Auto-motive Innovation, 1(2018), 3, pp. 187-210.
[26]Salameh, J. P., S. Cauet, E. Etien, A. Sakout, L. Rambault, Gearbox condition monitoring in wind turbines: A review. Mechanical Systems and Signal Processing, 111(2018), pp. 251-264.
[27]Herbert, G. J., S. Iniyan, E. Sreevalsan, S. Rajapandian, A review of wind energy technolo-gies, Renewable and sustainable energy Reviews, 11(2007), 6, pp. 1117-1145.
[28]Piwko, R., N. Miller, J. Sanchez-Gasca, X. Yuan, R. Dai, J. Lyons, Integrating large wind farms into weak power grids with long transmission lines, In Power Electronics and Motion Control Conference, IEEE, Portoroz, Slovenia, 2006.
[29]Sørensen, P., A. D. Hansen, F. Iov, F. Blaabjerg, M. H. Donovan, Wind farm models and control strategies, Risø National Laboratory (DK-4000 Roskilde), Denmark, Risø, 2005
[30]Bang, D., H. Polinder, G. Shrestha, J. A. Ferreira, Review of generator systems for direct-drive wind turbines, In European Wind Energy Conference & Exhibition, EWEA, Brussels, Belgium, 2008.
[31]Badrzadeh B, Qualitative performance assessment of semiconductor switching device, con-verter and generator candidates for 10 MW offshore wind turbine generators, Wind Energy, 14(2011), 3, pp. 425 - 448.
[32]Slemon, G. R., X. Liu, Modeling and design optimization of permanent magnet motors, Elec-tric Machines & Power Systems, 20(1992), 2, pp. 71-92.
[33]Wu, W., E. Spooner, B. J. Chalmers, Design of slotless TORUS generators with reduced voltage regulation, IEE Proceedings-Electric Power Applications, 142(1995), 5, pp. 337-343.
[34]Chang, J., D. Kang, J. Lee, J. Hong, Development of transverse flux linear motor with per-manent-magnet excitation for direct drive applications, IEEE Transactions on Magnetics, 41(2005), 5, pp. 1936-1939.
[35]Harris, M. R., G. H. Pajooman, S. A. Sharkh, Performance and design optimisation of elec-tric motors with heteropolar surface magnets and homopolar windings, IEE Proceedings-Electric Power Applications, 143(1996), 6, pp. 429-436.
[36]Schiferl R., High-temperature superconducting synchronous motors: economic issues for in-dustrial applications, IEEE Trans IndAppl, 44(2008), 5, pp. 1376–1384.
[37]Snitchler, G., B. Gamble, C. King, P. Winn, 10 MW class superconductor wind turbine gen-erators, IEEE Transactions on Applied Superconductivity, 21(2010), 3, pp. 1089-1092.
[38]Badrzadeh B., Qualitative performance assessment of semiconductor switching device, con-verter and generator candidates for 10 MW offshore wind turbine generators, Wind Energy, 14(2011), 3, pp. 425 - 448.
[39]de la Fuente, A.,. New system of precast concrete towers for wind farms, Academic Project, Technical University of Catalonia (UPC), Barcelona, Spain, 2007.
[40]Agbayani, N. A., R. E. Vega, The rapid evolution of wind turbine tower structural systems: a historical and technical overview, In Structures Congress 2012, ASCE, Chicago, IL (United States), 2012.
[41]Yoshida, S., Wind turbine tower optimization method using a genetic algorithm, Wind Engi-neering, 30(2006), 6, pp. 453 - 469.
[42]Web page: Enercon, Source: https://www.enercon.de/fileadmin/Redakteur/MedienPortal/windblatt/pdf/WB_032016_GB.pdf
(Accessed 16.06.2020).
[43]Grünberg, J., J. Göhlmann, Concrete structures for wind turbines, Erns & Sohn, Berlin, Germany, 2013.
[44]Ma, H., R. Meng, Optimization design of prestressed concrete wind-turbine tower, Science China Technological Sciences, 57(2014), 2, pp. 414-422.
[45]Lofty, A., Prestressed concrete wind turbine supporting system, MSc. Thesis, University of Nebraska, Lincoln, NE (United States), 2012.
[46]Zheng, D., L. D. Willey, W. W. Lin, U.S. Patent No. 7,927,445, U.S. Patent and Trademark Office, 2011.
[47]Ackermann, T., Wind power in power systems, John Wiley & Sons, Chichester, England, 2005.