Energetska efikasnost u sektoru javnih zgrada na teritoriji grada Kragujevca – studija slučaja OŠ „Milutin i Draginja Todorović“

##plugins.themes.bootstrap3.article.main##

Ana Radojević Aleksandar Nešović Jasmina Slerlić Dušan Gordić Daniela Nikolić

Apstrakt

Obrazovne ustanove (OU), sa udelom od oko 38%, predstavljaju najveću kategoriju objekata u sektoru javnih zgrada (SJZ) na teritoriji grada Kragujevca po pitanju potrošnje električne energije, koja na godišnjem nivou iznosi preko 10 GWh. Sprovođenjem odgovarajućih mera koje podrazumevaju obaveznu upotrebu obnovljivih izvora energije (OIE) u kombinaciji sa vodjenjem odgovorne energetske politike na gradskom nivou, potrošnja električne energije u navedenom sektoru može biti značajno redukovana, uz niz pozitivnih efekata, od energetskih i ekonomskih, do ekoloških. U ovom radu korišćeni su softverski paketi EnergyPlus i Google SketchUp kako bi se ispitala mogućnost postavljanja fotonaponskih (FN) panela na krov zgrade OŠ „Milutin i Draginja Todorović“, sa osnovnim ciljem da se u bližoj budućnosti ovaj model implementira i na ostale javne zgrade čime bi se obezbedila veća energetska nezavisnost i stabilnost čitavog sektora.

##plugins.themes.bootstrap3.article.details##

Kako citirati
RADOJEVIĆ, Ana et al. Energetska efikasnost u sektoru javnih zgrada na teritoriji grada Kragujevca – studija slučaja OŠ „Milutin i Draginja Todorović“. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 8, n. 1, p. 189-197, oct. 2020. Dostupno na: <http://izdanja.smeits.rs/index.php/mkoiee/article/view/6135>. Datum pristupa: 21 apr. 2021
Sekcija
Energetska efikasnost

Reference

[1] Energy efficiency program of the city of Kragujevac for the period 2018-2020, http://www.aarhus.org.rs/wp-content/uploads/2018/11/Program_energetske_efi-kasnosti_grada_Kragujevca.pdf (accessed on June 2020).
[2] Al-Otaibi, A., Al-Qattan, A., Fairouz, F., Al-Mulla, A., Performance evaluation of photovoltaic systems on Kuwaiti schools’ rooftop, Energy Conversion and Management, Vol. 95 (2015), Issue 1, pp. 110-119.
[3] Bilir, L., Yildirim, N., Photovoltaic system assessment for a school building, International Jour-nal of Hydrogen Energy, Vol. 42 (2017), Issue 28, pp. 17856-17868.
[4] Economou, A., Photovoltaic systems in school units of Greece and their consequences, Renewa-ble and Sustainable Energy Reviews, Vol. 15 (2011), Issue 1, pp. 881-885.
[5] Ubertini, S., Desideri, U., Performance estimation and experimental measurements of a photo-voltaic roof, Renewable Energy, Vol. 28 (2003), Issue 12, pp. 1833-1850.
[6] Alihodzic, R., Murgul, V., Vatin, N., Aronova, E., Nikolić, V., Tanić, M., Stanković, D., Re-newable Energy Sources Used to Supply Pre-School Facilities with Energy in Different Weather Conditions, Applied Mechanics and Materials, Vol. 624 (2014), Issue 1, pp. 604-612.
[7] Ibrik, I., Hashaika, F., Techno-Economic Impact of Grid-Connected Rooftop Solar Photovoltaic System for Schools in Palestine: A Case Study of Three Schools, International Journal of Energy Economics and Policy, Vol. 9 (2019), Issue 3, pp. 291-300.
[8] Kadyan, H., Berwal, Dr. A. K., Design of A 12 kWp Grid Connected roof top Solar Photovoltaic Power Plant on school building in the Rohtak District of Haryana, International Journal of Ap-plied Engineering Research, Vol. 13 (2018), Issue 1, pp. 11354-11361.
[9] Shaari, S., Bowman, N., Photovoltaics in buildings: A case study for rural England and Malaysia, Renewable Energy, Vol. 15 (1998), Issues 1-4, pp. 558-561.
[10]Yilmaz, S., Binici, H., Ozcalik, R. H., Energy supply in a green school via a photovoltaic-ther-mal power system, Renewable and Sustainable Energy Reviews, Vol. 57 (2016), Issue 1, pp. 713-720.
[11]Bilir, L., Yildirim, N., Photovoltaic system assessment for a school building, International Jour-nal of Hydrogen Energy, Volume 42 (2017), Issue 28, pp. 17856-17868.
[12]Elmasry, S. K., Haggag. M. A., Whole building design for a green school building in Al-Ain, United Arab Emirates, WIT Transactions on Ecology and the Environment, Vol. 150 (2011), Issue 1, pp. 165-176.
[13]Cholakkal, L., Cost-benefit analysis of a Building Integrated Photovoltaic Roofing system for a school located in Blacksburg, Virginia, M. Sc. thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, USA (Virginia), USA, 2006.
[14]Lou, S., Tsang, E. K. W., Li, D. H. W., Lee, E. W. M., Lam, J. C., Towards Zero Energy School Building Designs in Hong Kong, Energy Procedia, Vol. 105 (2017), Issue 1, pp. 182–187.
[15]EnergyPlus: Energy Simulation Software (Weather File).
[16]Prostar 72 solar cells monocrystalline 340 W, https://www.prostarsolar.net/product-details/prostar-72-solar-cells-monocrystalline-340w-solar-panel-cost (accessed on June 2020).
[17]Skerlić, J., Bojić, M., Optimization of solar collector performance by using EnergyPlus and Hooke-Jeeves algorithm, Proceedings of the 41st International congress on heating, refrigerating and air – conditioning, Association of Mechanical and Electrical Engineers and Technicians of Serbia SMEITS, Belgrade, Serbia, 2010.
[18]BOSH, installation and maintenance manual, http://bosch-rs.boschtt-documents.com/download/pdf/file/6720808645.pdf (accessed on June 2020).
[19]Viessmann, design instructions, https://webapps.viessmann.com/vibooks/api-internal/file/resources/tech-nical_docments/RS/sr/VPA/5815440VPA00014_1.PDF?#pagemode=bookmarks&zoom=page-fit&view=Fit (accessed on June 2020).
[20]Rulebook on energy efficiency of buildings, Law on Planning and Construction of the Republic of Serbia 2011, https://www.mgsi.gov.rs/sites/de-fault/files/PRAVILNIK%20O%20ENERGETSKOJ%20EFIKASNOSTI%20ZGRADA.pdf (ac-cessed on June 2020).