Alkalno metalno termoelektrično pretvaranje vanzemaljskog sunčevog zračenja i bežični prenos proizvedene snage do Zemlje – koliko je daleko ostvarenje?
##plugins.themes.bootstrap3.article.main##
Apstrakt
U ovom radu je analizirano alkalno metalno termoelektrično pretvaranje – konverzija (AMTEK) koncentrisanog sunčevog zračenja (KSZ) i njegova primena u terestričnim uslovima, uključujući hibridizaciju sa fosilnim gorivima i kogeneraciju, odnosno efektivnu i efikasnu upotrebu obe forme snage i energije – proizvedene električne i odate toplotne snage, odnosno energije. Rad obuhvata i istraživanje vizije primene AMTEK-a u vanzemaljskim uslovima kao sistema vanzemaljskog ciklusa snage (ETCS), odnosno kombinovanog integrisanog sistema AMTEK/ KSZ/ETCS. Analizirani su termodinamički modeli i merodavni termodinamički parametri sistema AMTEK/KSZ. Parametarska analiza je sprovedena uzimajući u obzir radijaciono-refleksione gubitke i gubitke prelazom i provođenjem toplote. Najzad, u radu je dat pregled idejnih nacrta, studija istraživanja tehnologija i puteva razvoja vanzemaljskih AMTEK/KSZ/ETCS sistema, kao i najnovijih naučno-tehnoloških prodora i razmatranja genijalnih radova i vizija Nikole Tesle, s posebno otvorenim pitanjem mogućih izgleda za realizaciju i onih još neostvarenih.
##plugins.themes.bootstrap3.article.details##
Reference
[2] Sasakawa, E., M. Kanzaka, A. Yamada, H. Tsukuda, Performance of the Terrestrial Power Generation Plant Using the Alka- li Metal Thermo-Electric Conversion (AMTEC), Proceedings of the 25th Intersociety Conversion Engineering Conference, Vol. 3, pp 143–149, 1992.
[3] Sievers, F., J. Ivanenok, K. T. Hunt, Alkali Metal Thermal to Electric Conversion, Mech. Engineering, Vol. 117, No. 10, pp. 70–76, 1995.
[4] Todorović, M., F. Kosi, Ekoenergo-tehnologije – novi sistemi pretvaranja energije za termoenergetiku i termotehniku“, KGH, Vol. SMEITS 1996.
[5] Todorovic, M., S. Mentus, O. Ecim, Lj. Simic, Thermodynamic Analysis of Alkali Metal Thermoelectric Converters of Solar Radiation, Proceedinings of the Fifth International Conference Tesla – III Millennium, pp. IV-87-94, Belgrade, 1996.
[6] Weber, A., Thermoelectric Device Based on Beta-Alumina Solid Electrolyte, Energy Convers. 14, No. 1, pp. 1–8, 1974.
[7] McCue, D., Japan continues to pursue dream of solar power harvested from space, http://www.renewableenergymagazi- ne.com /energias/renovables/index/pag/pv_solar/colleft/ colright/pv_solar/tip/articulo/pagid/16323/botid/71/, July 2011.
[8] Karalis, A., J. D. Joannopoulos, M. Soljačić, Efficient wireless non-radiative mid-range energy transfer, Annals of Physics 323, 2008.
[9] Mclinko, R. M., B. V. Sagar, Space-based solar power generation using a distributed network of satellites and methods for ef- ficient space power transmission, International Conference on Space Information Technology 2009.
[10] Civric, Z., Elements of the Concept of Sustainability in the Works of Nikola Tesla, Proceedings, ECOS Conference, Novi Sad, 2011.
[11] Glaser, P., Method and Apparatus for Converting Solar Radiation to Electrical Power (US Patent No. 3,781,647; U.S. Patent and Trademark Office; Washington, D.C.) 25 December 1973.
[12] Mankins, J. C., N. Kaya, Space Solar Power – The first international assessment of space solar power opportunities, issues and potential pathways forward, Int. Academy of Astronautics., http://iaaweb.org/iaa/Studies/sg311_finalreport_solarpower.pdf., August, 2011.
[13] Narita, T., T. Kamiya, K. Suzuki, K. Anma, M. Niitsu, N. Fukuda, The Development of Space Solar Power System Technologies, Mitsubishi Heavy Industries Technical Review Vol. 48 No. 4, December 2011.
[14] Marinčić, A., Z. Civrić, B. Milovanović, Nikola Tesla’s Contributions to Radio Developments, Serbian Journal of Electrical Engineering, Vol. 3, No. 2, pp. 131–148, November 2006.
[15] Karalis, J., D. Joannopoulos, M. Soljacic, Efficient wireless non-radiative mid-range energy transfer, Annals of Physics 323, pp. 34–48, 2008.
[16] Popović, Z. B., Wireless Powering for Low-Power Distributed Sensors, Serbian Journal of Electrical Engineering, Vol. 3, No. 2, pp. 149–162, November 2006.
[17] ***, Space-Based Solar Power As an Opportunity for Strategic Security, Phase 0 Architecture Feasibility Study Report to the Director, National Security Space Office Interim As- sessment, Release 0.1, 2007, www.nss.org/settlement/ssp/ library/nsso.htm
[18] Barathwaj. G., K. Srinag, Wireless power Transmission of Space Based Solar Power, 2011 2nd International Conference on Environmental Science and Technology, IPCBEE, Vol. 6 (2011) IACSIT Press, Singapore.
[19] Deng, Y.-G., J. Liu, Recent advances in direct solar thermal power generation, Journal of Renewable and Sustainable Ener- gy 1, 052701, 2009.
[20] Lior, N., Power from Space, Energy Conversion and Management, pp. 1769–1805, 2001.
[21] Lodhi, M. A. K., P. Vijayaraghavan, A. Daloglu, An overview of advanced space/terrestrial power generation device: AMTEC, Journal of Power Sources 103, pp. 25–33, 2001.
[22] Giglio. J. C., K. R. Sievers, E. F. Mussi, Update of the Design of the AMTEC Converter for Use in AMTEC Radioisotope Power Systems, AIP Conf. Proc. 552, pp. 1047–1054, 2001.
[23] Johnson, G., M. E. Hunt, W. R. Determan, P. A. HoSang, J. Ivanenok, M. Schuller, IEEE Aerosp. Electron. Syst., Mag. 12, 33 1997.
[24] Hendricks, T. J., C. D. Huang, J. Sol. Energy Eng. 122, 49, 2000.