Broj izmena vazduha kao jedini pokazatelj efikasnosti sistema za distribuciju vazduha u smanjivanju prenošenja zarazne bolesti putem vazduha koja izaziva kašalj u prostoriji sa plafonskom ventilacijom mešanjem: Studija slučaja

##plugins.themes.bootstrap3.article.main##

Jovan Pantelić Kwok Wai Tham

Apstrakt

U unutrašnjim sredinama u kojima postoji bojazan od prenošenja zaraznih bolesti putem vazduha, broj izmena vazduha se obično koristi kao jedini pokazatelj rada sistema za dovod vazduha. Na osnovu razmatranja razređivanja ukupne zapremine, ovaj pokazatelj ukazuje na to da će povećanje protoka dovodnog vazduha smanjiti rizik od prenošenja zaraznih bolesti putem vazduha. Rezultati dobijeni iz nedavnih studija o oslobađanju kapljica kašlja koje su sprovedene u komori za ispitivanje uslova sredine na Nacionalnom univerzitetu u Singapuru, ukazuju da povećanje protoka dovodnog vazduha povećava rizik od prenošenja zaraze vazduhom za nekoliko položaja izvora kašlja i osetljive osobe u odnosu na rešetke za dovodni i odvodni vazduh. Metoda merenja brzine fotogramom čestica primenjena je za ispitivanje polja vazdušnog strujanja, brojač čestica ili aerosola a Grimm 1.108 korišćen je za merenje koncentracije kapljica u komori FEC. Rezultati ove studije ukazuju da obrazac lokalnog vazdušnog strujanja predstavlja važan faktor koji utiče na raspršivanje kapljica kašlja i na izloženost zarazi koja nastaje kao posledica toga. Pokazano je da povećanje protoka dovodnog vazduha može da dovede do povećanja izloženosti zarazi pod određenim oklonostima. To dalje podrazumeva da broj izmena vazduha ne bi trebalo koristiti kao jedini pokazatelj mogućnosti sistema za dovod vazduha da smanji izloženost kapljicama zaraze koja se prenosi vazduhom.

##plugins.themes.bootstrap3.article.details##

Kako citirati
PANTELIĆ, Jovan; THAM, Kwok Wai. Broj izmena vazduha kao jedini pokazatelj efikasnosti sistema za distribuciju vazduha u smanjivanju prenošenja zarazne bolesti putem vazduha koja izaziva kašalj u prostoriji sa plafonskom ventilacijom mešanjem: Studija slučaja. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 47, n. 3, p. 255-266, sep. 2018. ISSN 2560-340X. Dostupno na: <https://izdanja.smeits.rs/index.php/kgh/article/view/3729>. Datum pristupa: 22 oct. 2018
Sekcija
Tematski članci

Reference

[1] *** ASHRAE 2007. ASHRAE/ASNI Standard 62.1, Ventilation for Acceptable Indoor Air Quality. Atlanta: ASHRAE.
[2] Beggs, C. B., K. G. Kerr, C. J. Noakes, E. A. Hathway, P. A. Sleigh, 2008. The ventilation of multiple-bed hospital wards: Review and analysis. American Journal of Infection Control 36(4): 250–9.
[3] Bolashikov, Z. D., A. K. Melikov, 2009. Methods for air cleaning and protection of building occupants from airborne pathogens. Building and Environment 44(7):1378– 85. air from a sick occupant in a two-bed hospital room with mixing ventilation: effect of distance from sick occupant and air change rate. Proceeding of Indoor Air 2011, Austin, TX.
[5] Bolashikov, Z. D., A. K. Melikov, W. Kierat, Popio-Lek, Z., M. Brand, 2012. Exposure of healthcare workers and occupants to coughed airborne pathogens in a double- bed hospital room with overhead mixing ventilation. HVAC&R Research 18:602–15.
[6] *** Centers for Disease Control and Prevention. 2013. FluView. Atlanta, GA: Centers for Disease Control and Prevention.
[7] *** Centers for Disease Control and Prevention; Healthcare Infection Control Practices Advisory Committee. (2003). Guidelines for environmental infection control in health- care facilities. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.
[8] Cermak, R., A. K. Melikov, 2007. Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation. HVAC&R Research 13:23–38.
[9] Chao, C. Y. H., M. P. Wan, 2006. A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach. Indoor Air 16(4):296–312.
[10] Chao, C. Y. H., M. P. Wan, L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, Y. Li, X. Xie, D. Katoshevski, 2009. Characterization of expiratory air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science 40:122–33.
[11] Chao, C. Y. H., M. P. Wan, G. N. Szeto, 2008. Transport and removal of expiratory droplets in hospital ward environment. Aerosol Science and Technology 42:377–94.
[12] Chen, C., B. Zhao, 2010. Some questions on dispersion of human exhaled droplets in ventilation room: Answers from numerical investigation. Indoor Air 20:95–111.
[13] Chen, S. C., C. M. Liao, 2008. Modeling control measures to reduce the impact of pandemic influenza among schoolchildren. Epidemiology Infect 136:1035–45.
[14] Cheng, Y. H., C. M. Liao, 2013. Modeling control measure effects to reduce indoor transmission of pandemic Influenza H1N1 2009 virus. Building and Environment 63:11–19.
[15] Decker, J., 1995. Evaluation of isolation rooms in health care settings using tracer gas analysis. Applied Occupational Environmental Hygiene 10(11):887–91.
[16] Duguid, J., 1946. The size and duration of air-carriage of respiratory droplets and droplet nuclei. The Journal of Hygiene 4:471–80.
[17] Eames, I., J. W. Tang, Y. Li, P. Wilson, 2009. Airborne transmission of disease in hospitals. Journal of the Royal Society 6(6):S697–702.
[18] Etheridge, D., M. Sandberg, 1996. Building ventilation: Theory and measurement. New York: John Willey & Sons.
[19] Fadeyi, M. O., K. W. Tham, 2009. Airflow and leakage measurements in a field environmental chamber that has three supply air modes and with ventilation system recirculating larger percentage of its air. Proceedings of Room Vent 2009, May 24–27, Busan, South Korea.
[20] First, W. M., E. A. Nardell, W. Chaisson, R. Riley, 1999. Guidelines for the application of upper-room ultraviolet germicidal irradiation for preventing transmission of airborne contagion – Part I: Basic principles. ASHRAE Transactions 105:869–76.
[21] Fraser, C., W. Riley, R. M. Anderson, N. M. Ferguson, 2004. Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Science 101:6146–51.
[22] Hanzawa, H., A. K. Melikov, P. O. Fanger, 1987. Airflow characteristics in the occupied zone of ventilated spaces. ASHRAE Transactions 93:524–39.
[23] Hinds, W. C., 1999. Aerosol technology. New York: John Wiley & Sons.
[24] Holmgren, H., B. Bake, A. K. Olin, E. Ljungstrom, 2011. Relation between humidity and size distribution of exhaled particles. Journal of Aerosol Medicine and Pulmonary Drug Delivery 24:253–60. 266 kgh 3/2018
[25] *** Insight 3G Software Manual. 2009. TSI Incorporated, Shoreview, MN.
[26] Kao, P. H., R. J. Yang, 2006. Virus diffusion in isolation rooms. Journal of Hospital Infection 62:338–45.
[27] Kaushal, V., P. S. Saini, A. K. Gupta, 2004. Environmental control including ventilation in hospitals. JK Science 6(4):229–32.
[28] Kowalski, W. J., W. Bahnfleth, T. S. Whittam, 1999. Filtration of airborne microorganisms: Modeling and prediction. ASHRAE Transactions: Research 105(2):4–17.
[29] Levy, B. S., D. H. Wegman, S. L. Barron, R. K. Sokas, 2005. Occupational health: Recognizing and preventing work-related disease and injury. Philadelphia: Lippincott Williams & Wilkins.
[30] Li, Y., M. G. Leung, J. W. Tang, X. Yang, C. Y. H. Chao, J. Z. Lin, J. W. Lu, P. V. Nielsen, J. Niu, H. Qian, A. Sleigh, H. J. Su, J. Sundell, T. W. Wong, P. L. Yuen, 2007. Role of ventilation in the airborne transmission of infectious agents in the built environment—A multidisciplinary systematic review. Indoor Air 17:2–18.
[31] Melikov, A. K., 2004. Personalized ventilation. Indoor Air 14:157–67.
[32] Milton, D. K., P. M. Fabian, B. J. Cowling, M. J. Grantham, J. J. McDevitt, 2013. Influenza virus aerosol in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathogens 9(3):e1003205.
[33] Morawska, L., 2006. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 16:335–47.
[34] Nicas, M., W. Nazaroff, A. Hubbard, 2005. Towards understanding the risk of secondary airborne infection: emission of respirable pathogens. Journal of Occupational and Environmental Hygiene 2(3):143–54.
[35] Nielsen, P. V., Y. Li, Y. Buus, F. V. Winther, 2010. Risk of crossinfection in a hospital ward with downward ventilation. Building and Environment 45:2008–14.
[36] Noakes, C., L. A. Fletcher, P. A. Sleigh, W. A. Booth, B., Beato-Arribas, B., N. Tomlinson, 2009. Comparison of tracer techniques for evaluating the behavior of bioaerosols in hospital isolation rooms. Proceedings of Healthy Buildings, Syracuse, NY , September 13–17, Paper
[37] Pantelic, J., 2010. Exposure generated by cough released droplets in the indoor environment – A comparison among four ventilation systems. PhD thesis, National University of Singapore, Singapore.
[38] Pantelic, J., B. Raphael, K. W. Tham, 2012. A preference driven multicriteria optimization tool for HVAC design and operation. Energy andBuildings55:118–26.
[39] Pantelic, J., G. N. Sze To, K. W. Tham, C. Y. H. Chao, Y. C. M. Khoo, 2009. Personalized ventilation as a control measure for airborne transmissible disease spread. Journal of Royal Society Interface 6:S715–26.
[40] Pantelic, J., K. W. Tham, 2011. Assessment of mixing air delivery system ability to protect occupants from the airborne infectious disease transmission using Wells-Rilley approach. HVAC&R Research 18: 562–74.
[41] Popio-Lek, Z., Z. Bolashikov, K. Kostadinov, W. Kierat, A. Melikov, 2012. Exposure of health care workers and occupants to coughed air in a hospital room with displacement air distribution: impact of ventilation rate and distance from coughing patient. Proceedings of Healthy Buildings 2012, June 8–12, Brisbane, Australia.
[42] Qian, H., Y. Li, 2010. Removal of exhaled particles by ventilation and deposition in a multibed airborne infection isolation room. Indoor Air 20:284–97.
[43] Qian, H., Y. Li, P. V. Nielsen, C. E. Hyldgaard, T. W. Wong, A. T. Y. Chwang, 2006. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems. Indoor Air 16:111–28.
[44] Streifel, A., 1999. Hospital epidemiology and infection control, 2nd Ed. Design and maintenance of hospital ventilation systems and prevention of airborne nosocomial infections, Chapter 80, pp. 1211–21. Philadelphia: Lippincott Williams & Wilkins.
[45] Sun, W., J. Ji, Y. Li, X. Xie, 2007. Dispersion and settling characteristics of evaporating droplets in ventilated room. Building and Environment 42(2):1011–17.
[46] Sun, Y., Y. Zhang, 2007. An overview of room air motion measurement: Technology and application. HVAC&R Research 13:929–50.
[47] Sun, Y., Y. Zhang, A. Wang, J. L. Topmiller, J. Bennett, 2005. Experimental characterization of airflows in aircraft cabins. Part I: Experimental system and measurement procedure. ASHRAE Transactions 111(2):45–52.
[48] Sze To, G. N., M. P. Wan, C. Y. H. Chao, L. Fang, A. Melikov, 2009. Experimental study of dispersion and deposition of expiratory aerosols in aircraft cabins and impact on infectious disease transmission. Aerosol Science and Technology 43:466–85.
[49] Tang, J. W., Y. Li, I. Eames, P. K. S. Chan, G. L. Ridgway,
2006. Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection 64:100–14.
[50] Tang, J. W., A. D. G. Nicolle, J. Pantelic, C. A. Klettner, R. K. Su, P. Kalliomaki, P. Saarinen, H. Koskela, K. Reijula, P. Mustakallio, D. K. W. Cheong, C. Sekhar, K. W. Tham, 2013. Different types of door-opening motions as contributing factors to containment failures in hospital isolation rooms. PLoS ONE 8(6):e66663. doi:10.1371/journal.pone.0066663.
[51] Tung, Y. C., Y. C. Shih, C. S. Hu, 2009. Numerical study on the dispersion of airborne contaminants from an isolation room in the case of door opening. Applied Thermal Engineering 29(8–9):1544– 51.
[52] VanSciver, M., S. Miller, J. Hertzberg, 2011. Particle image velocimetry of human cough. Aerosol Science and Technology 45:415–22.
[53] Wan, M. P., C. Y. H. Chao, 2007. Transport characteristics of expiratory droplets and droplet nuclei in indoor environments with different ventilation air flow patterns. Journal of Biomechanical Engineering 129(3):341–53.
[54] Zhang, R., G. Tu, J. Ling, 2008. Study on biological contaminant control strategies under different ventilation models in hospital operating room. Building and Environment 43(5):793– 803.
[55] Zhang, Y., Y. Sun, A. Wang, J. L. Topmiller, J. Bennett, 2005. Experimental characterization of airflows in aircraft cabins. Part II: Results and research recommendations. ASHRAE Transactions 111(2):53–59.
[56] Zhao, B., P. Guan, 2007. Modeling particle dispersion in personalized ventilated room. Building and Environment 42(3):1099–109.
[57] Zhao, B., C. Yang, X. Yang, S. Liu, 2008. Particle dispersion and deposition in ventilated rooms: Testing and evaluation of different Eulerian and Lagrangian models. Building and Environment 43(4):388–97.
[58] Zhu, S., S. Kato, S. Murakami, T. Hayashi, 2005. Study on inhalation region by means of CFD analysis and experiment. Building and Environment 40:1329–36.
[59] Zhu, S., S. Kato, J. H. Yang, 2006. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Building and Environment 41:1691–1702.
[60] Zuraimi, M. S., G. J. Nilsson, R. J. Magee, 2011. Removing indoor particles using portable air cleaners: Implications for residential infection transmission. Building and Environment 46(12): 2512–19.