Sistem za otkrivanje i dijagnostiku otkaza (ODO) za neefikasnosti na zonskom nivou zasnovan na kvantitativnom modelu

##plugins.themes.bootstrap3.article.main##

Justin Berquist William O’Brien

Apstrakt

Udeo sistema za grejanje, ventilaciju i klimatizaciju (KGH) je značajan deo ukupne potrošnje energije u zgradama. Većina istraživanja u oblasti otkrivanja otkaza zanemarila je otkaze na zonskom nivou (zone-level faults). U ovoj studiji je prikazana metodologija sistema za otkrivanje i dijagnostiku otkaza (ODO) zasnovanog na kvantitativnom modelu za zonski nivo. Razvijen je bazni toplotni model za jednu privatnu poslovnu prostoriju da bi se uporedile očekivane i izmerene performoanse prostorije. Sprovedene su analize i identifikovano je pet neefikasnosti na zonskom nivou. Analizirana je težina/ozbiljnost tih neefikasnosti i utvrđeno je da je posledica bila prekomerna potrošnja energije ventilatora jedinice za pripremu vazduha (AHU). Prekomeran broj tih otkaza u zgradi tera uređaj za pripremu vazduha da troši neopravdanu količinu energije, što naglašava značaj primene sistema za otkrivanje i dijagnostiku na zonskom nivou. Koristi od ove metodologije obuhvataju otkrivanje prethodno postojećih otkaza koji potiču iz prvobitnog projekta, kao i mogućnost da se ona primeni na nove ili postojeće zgrade kada je na raspolaganju dovoljna senzorsko-merna infrastruktura, čime se poboljšava efikasnost zgrade.

##plugins.themes.bootstrap3.article.details##

Kako citirati
BERQUIST, Justin; O’BRIEN, William. Sistem za otkrivanje i dijagnostiku otkaza (ODO) za neefikasnosti na zonskom nivou zasnovan na kvantitativnom modelu. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 47, n. 3, p. 269-282, sep. 2018. ISSN 2560-340X. Dostupno na: <https://izdanja.smeits.rs/index.php/kgh/article/view/3730>. Datum pristupa: 22 oct. 2018
Sekcija
Tematski članci

Reference

[1] Angelov, P., R. A. Buswell, V. I. Hanby, J. A. Wright, 2000. A methodology for modeling HVAC components using evolving fuzzy rules. Proceedings of the Industrial
Electronics Society, 2000, IECON 2000. 26th Annual Conference of the IEEE, pp. 247–52.
[2] Athienitis, A. K. 2010. Building thermal analysis. Quebec: PTC.
[3] Azar, E., C. C. Menassa, 2014. A data collection and analysis framework to improve the performance of energy-intensive commercial buildings. Computing in Civil and Building Engineering, pp. 1142–49.
[4] Beausoleil-Morrison, I., 2001. An algorithm for calculating convection coefficients for internal building surfaces for the case of mixed flow in rooms. Energy and Buildings, 33(4):351–61.
[5] Beghi, A., L. CecChinato, L. Corso, M. Rampazzo, F. Simmini, 2013. Process history-based fault detection and diagnosis for VAVAC systems. Proceedings of the 2013 IEEE International Conference on Control Applications (CCA), pp. 1165–70.
[6] Beghi, A., R. Brignoli, L. Cecchinato, G. Menegazzo, M. Rampazzo, F. Simmini, 2016. Data-driven fault detection and diagnosis for HVAC water chillers. Control Engineering Practice 53(8):79–91.
[7] Buswell, R. A., P. Haves, J. A. Wright, 2003. Model-based condition monitoring of a HVAC cooling coil subsystem in a real building. Building Services Engineering Research and Technology, pp. 103–16.
[8] Bynum, J. D., D. E. Claridge, J. M. Curtin, 2012. Development and testing of an automated building commissioning analysis tool (ABCAT). Energy and Buildings, 55(12):607–17.
[9] Cheung, H., and J. E. Braun, 2013a. Simulation of fault impacts for vapor compression systems by inverse modeling. Part I: Component modeling and validation.
HVAC&R Research 24(2):892–906. 282 kgh 3/2018
[10] Cheung, H., J. E. Braun, 2013b. Simulation of fault impacts for vapor compression systems by inverse modeling. Part II: System modeling and validation. HVAC&R Research 19(7):907–21.
[11] Claridge, D. E., G. Lin, 2009. Retrospective testing of an automated building commissioning analysis tool (ABCAT). Technical Report ESL-TR-09-01-01. College Station, TX: Energy Systems Laboratory.
[12] Claridge, D. E., C. H. Culp, M. Liu, S. Deng, W. D. Turner, J. Haberl, 2000. Campus-wide continuous commissioning of university buildings. Proceedings of the ACEEE 2000 Summer Study on Energy Efficiency in Buildings, pp. 101–12.
[13] Cui, J., S. Wang, 2005. A model-based online fault detection and diagnosis strategy for centrifugal chiller systems. International Journal of Thermal Sciences, 44(10):986–99. [14] *** DOE, 2016a. Chapter 6, Building sector energy consumption. International energy outlook. Washington, DC: U.S. Department of Energy. https://www.eia.gov/out- looks/ieo/buildings.cfm.
[15] *** DOE, 2016b. EnergyPlus, ver. 8.6. Washington, DC: U.S. Department of Energy, Building Technologies Office; and National Renewable Energy Laboratory. www.energy plus.net.
[16] Dong, B., Z. O’Neill, Z. Li, 2014. A BIM-enabled information infrastructure for building energy fault detection and diagnostics. Automation in Construction, 44(2014):197–211.
[17] *** ESRU, 2018. ESP-r software. https://github.com/ESP-rCommunity/ESP-rSource. Glasglow, Scotland: Energy Systems Research Unit.
[18] Gao, D.-c., S. Wang, K. Shan, C. Yan, 2016. A system level fault detection and diagnosis method for low delta T syndrome in the complex HVAC systems. Applied Energy 164(2016):1028–38.
[19] Gunay, B., W. Shen, C. Yang, 2017. Characterization of a building’s operation using automation data: A review and case study. Building and Environment, 118(2017):196–201.
[20] Katipamula, S., M. R. Brambley, 2005. Methods for fault detection, diagnostics, and prognostics for building systems – A review, Part 1. HVAC&R Research 11(1): 3–25.
[21] Li, H., J. E. Braun, 2007. A methodology for diagnosing multiple simultaneous faults in vapor-compression air conditioners. HVAC&R Research 13(2):369–95.
[22] Li, X., Y. Li, J. E. Seem, 2010. Dynamic modeling of mechanical draft counter-flow wet cooling tower with Modelica. Proceedings of ASME 2010 Dynamic Systems and Control Conference, pp. 687–94.
[23] *** MathWorks® n.d. MATLAB®. Natick, MA: The MathWorks, Inc. https://www.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab.
[24] Narayanaswamy, B., B. Balaji, R. Gupta, Y. Agarwal, 2014. Data driven investigation of faults in HVAC systems with model, cluster and compare (MCC). Proceedings of the First ACM Conference on Embedded Systems for Energy-Efficient Buildings, pp. 50–59.
[25] *** NRCan, 2013. Energy use data handbook. Ottawa, Ontario: Natural Resources Canada. http://oee.nrcan.gc.ca/publi- cations/statistics/handbook201 /handbook2013.pdf.
[26] Peeters, L., I. Beausoleil-Morrison, A. Novoselac, 2011. Internal convective heat transfer modeling: Critical review and discussion of experimentally derived correlations. Energy and Buildings 43(9):2227–39.
[27] Piette, M., S. Kinney, P. Haves, 2001. Analysis of an information monitoring and diagnostic system to improve building operations. Energy and Buildings, 33(8):783–91.
[28] Riederer, P., 2002. Thermal room modelling adapted to the test of HVAC control systems. Paris: Ecole Nationale Superieure des Mines de Paris.
[29] Rossi, T. M., J. E. Braun, 1997. A statistical, rule-based fault detection and diagnostic method for vapor compression air conditioners. HVAC&R Research 3(1):19–37.
[30] Schein, J., S. T. Bushby, 2005. Fault detection & diagnostics for AHUs and VAV boxes. ASHRAE Journal
[31] 47(7):58–63.
[32] Schein, J., S. T. Bushby, 2006. A hierarchical rule-based fault detection and diagnostic method for HVAC systems. HVAC&R Research 12(1):111–25.
[33] Schein, J., J. M. House, 2003. Application of control charts for detecting faults in variable-air-volume boxes. ASHRAE Transactions 109(2).
[34] Schein, J., S. T. Bushby, N. S. Castro, J. M. House, 2006. A rule-based fault detection method for air handling units. Energy and Buildings 38(12):1485–92.
[35] Song, L., M. Liu, D. E. Claridge, P. Haves, 2003. Study of on-line simulation for whole building level energy consumption fault detection and optimization. Proceedings of Architectural Engineering 2003: Building Integration Solutions, pp. 1–8.
[36] Sreedhara, P., P. Haves, 2001. Comparison of chiller models for use in model-based fault detection. Energy Systems Laboratory. Proceedings of the International Conference for Enhanced Building Operations, Austin, TX.
[37] *** Trimble, Inc. 2018. SketchUp software. https://www.sketchup.com/.
[38] Wu, S., J.-Q. Sun, 2011. Cross-level fault detection and diagnosis of building HVAC systems. Building and Environment 46(8):1558–66.
[39] Yang, H., S. Cho, C.-S. Tae, M. Zaheeruddin, 2008. Sequential rule based algorithms for temperature sensor fault detection in air handling units. Energy Conversion and Management 49(8):2291–306.
[40] Yu, B., A. Van Paassen, S. Riahy, 2003. Open window and defective radiator valve detection. Building Services Engineering Research and Technology 24(2):117–24.
[41] Zimmermann, G., Y. Lu, G. Lo, 2012. Automatic HVAC fault detection and diagnosis system generation based on heat flow models. HVAC&R Research 18(1–2):112–25.