Upotreba ekstremnih referentnih godina u optimizaciji renoviranja zgrade

##plugins.themes.bootstrap3.article.main##

Alessandro Prada Giovanni Pernigotto Andrea Gasparella

Apstrakt

Optimizacija obnove postojećih objekata je jedna od najmerodavnijih najvažnijih projektnih aktivnosti za postizanje energetske efikasnosti i održivosti u skladu sa smernicama nacionalnih i međunarodnih politika. Potrebno je pronaći optimalna rešenja kako bi se uštedela energija uz minimalne ukupne troškove. Imajući u vidu taj cilj, tehnike višeciljne optimizacije u sprezi sa simulacijom performansi zgrade pokazale su se veoma efikasnim i od velike su pomoći za stručnjake i vlasnike zgrada prilikom izbora. Detaljno poznavanje karakteristika postojeće zgrade i graničnih uslova, među kojima su referentni meteorološki podaci od prvorazrednog značaja. Na definisanje interventnih mera koje treba primeniti za optimalnu obnovu u velikoj meri utiče reprezentativnost vremenskih podataka. Tipične referentne godine (TRG) su pogodne za procenu prosečnog ponašanja zgrade. Međutim, one ne sadrže neke informacije za tačno dimenzionisanje merenje naknadnih intervencija na obnovi zgrada i za procenu rezilijentnosti odnosno otpornosti optimalnih konfiguracija zgrade na tipičnu varijabilnost klime u serijama istorijskih vremenskih podataka.
Cilj ovog rada je da istraži kako na rešenja za obnovu optimizirana na osnovu TRG utiče klimatska varijabilnost i koliko su rezultati procesa višeciljne optimizacije robustni na varijabilnost vremenskih prilika. Pored procene karakteristika zgrade u tipičnim uslovima opisanim pomoću TRG, razmatraju se i tipični ekstremni uslovi, koji su sumirani u Ekstremnim Referentnim Godinama (ERG). Sintetičke ERG mogu da budu važan alat za dopunu informacija koje pruža TRG.

##plugins.themes.bootstrap3.article.details##

Kako citirati
PRADA, Alessandro; PERNIGOTTO, Giovanni; GASPARELLA, Andrea. Upotreba ekstremnih referentnih godina u optimizaciji renoviranja zgrade. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 48, n. 1, p. 74-81, mar. 2019. ISSN 2560-340X. Dostupno na: <https://izdanja.smeits.rs/index.php/kgh/article/view/4335>. Datum pristupa: 23 oct. 2019
Sekcija
Tematski članci

Reference

*** European Commission, Proposal for a directive of the European parliament and of the council amending Directive 2010/31/EU on the energy performance of buildings, Brussels, Belgium, 206
*** Buildings Performance Institute Europe, Factsheet: 97% of buildings in the EU need to be upgraded, Brussels, Belgium, http://bpie.eu/publication/97-of-buildings-in-the-eu-need-to-be-upgraded/
Pernigotto, G., A. Prada, F. Cappelletti, A. Gasparella, Impact of Reference Years on the Outcome of Multi-Objective Optimization for Building Energy Refurbishment, Energies 10 (2017), 11.
Pernigotto, G., A. Prada, A. Gasparella, Development Of Extreme Reference Years For Building Energy Simulation Scenarios, Proceedings of EnviBUILD 2017, Vienna, Austria, 2017.
Short, C. A., K. J. Lomas, R. Giridharan, A. J. Fair, Building resilience to overheating into 1960’s UK hospital buildings within the constraint of the national carbon reduction target: Adaptive strategies, Building and Environment, 55 (2012), 73-95.
Afgan, N. H., Energy, water and environment catastrophic events in resident buildings, Energy and Buildings 65 (2013), 523–528.
Bhattachaya, M., Building Resilience through Real-life Scenario-based Technology Enhanced Learning Environment Design, Proceedings of IEEE Region 10 Humanitarian Technology Conference, Sendai, Japan, 2013.
O’Brien, W., I. Bennet, Simulation-Based Evaluation of High-Rise Residential Building Thermal Resilience, ASHRAE Transactions 122 (2016), 1, 455-468.
Lassandro, P., S. Di Turi, Energy efficiency and resilience against increasing temperatures in summer: the use of PCM and cool materials in buildings, International Journal of Heat and Technology 35 (2017), 307-315.
Crawley, D. B., L. K. Lawrie, Rethinking the TMY: is the ‘Typical’ Meteorological Year best for Building Performance Simulation?, Proceedings of the 14th international Building Simulation conference, Hyderabad, India, 2015.
Ferrari, D., T. Lee, Beyond TMY: climate data for specific applications, Proceedings 3rd International Solar Energy Society Conference - Asia Pacific Region, Sydney, Australia, 2008.
Frank, T., Climate change impacts on building heating and cooling energy demand in Switzerland, Energy and Buildings 37 (2005), 11, 1175-85.
Freeman, T. L., Evaluation of the ‘Typical Meteorological Years’ for Solar Heating and Cooling System Studies – Final Report, Solar Energy Research Institute, Golden, CO, U.S.A., 1979.
Nik, V. M., Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs), Applied Energy, 177 (2016), 204-226.
*** ASHRAE, ASHRAE Standard 90.1-2007, Energy standard for buildings except low-rise residential buildings, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. Atlanta, Georgia, USA, 2007.
Penna, P., A. Prada, F. Cappelletti, A. Gasparella, Multi-objective optimization for existing buildings retrofitting under government subsidization, Science and Technology for the Built Environment, 21 (2015), 847–861.
Nguyen, A.T., S. Reiter, P. Rigo, A review on simulation-based optimization methods applied to building performance analysis, Applied Energy, 113 (2014), 1043-1058
Deb, K., A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transaction on Evolutionary Computation, 6 (2002),182–197
A. Prada, A. Gasparella, P. Baggio, On the performance of meta-models in building design optimization, Applied Energy, 225 (2018), 814–826.
Zitzler, E., L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Transactions on evolutionary computation, 3 (1999), 257–271.