Ventilacija zgrade kao efektivna mera interventne strategije sprečavanja bolesti u gustoj mreži kontakata u zatvorenom prostoru u idealnom gradu

##plugins.themes.bootstrap3.article.main##

Xiaolei Gao Jianjian Wei Hao Lei Pengcheng Xu Benjamin J Cowling Yuguo Li

Apstrakt

Novonastale bolesti mogu brzo da se prošire kroz guste i velike gradske mreže kontakata, posebno one koje se prenose vazdušnim putem, pre nego što nove vakcine postanu dostupne. Bolesti prenosive putem vazduha mogu brzo da se rašire dok ljudi posećuju razne unutrašnje sredine i ostvaruju česte međusobne kontakte. Napravili smo jednostavan model kontakata u zatvorenom prostoru za idealan grad sa 7 miliona stanovnika i 3 miliona zatvorenih prostora, i procenili smo verovatnoću i trajanje kontakata između bilo koja dva pojedinca tokom jednog dana. Da bismo to uradili, koristili smo podatke iz stvarnih popisa stanovništva, anketa o socijalnom ponašanju, ispitivanja zgrada, i merenja ventilacije u Hong Kongu, i odredili smo osam grupa stanovništva i sedam grupa lokacija zatvorenog prostora. Naš model kontakata u zatvorenom prostoru objedinjen je sa postojećim epidemiološkim modelom „Osetljiv, izložen, zarazan i oporavljen” (engl. SEIR) radi procene širenja bolesti, kao i sa Vels-Rejlijevom jednačinom kako bi se izračunali rizici od lokalne infekcije, rezultujući integralnim modelom mreže unutrašnjeg prenosa. Ovaj model je korišćen za procenu verovatnoće prelaska zaraze sa zaraženog pojedinca na druge ljude u gradu, kao i za procenu dinamike prenošenja bolesti. Predvideli smo verovatnoću zaraženosti svake podgrupe stanovništva pod različitim sistemima ventilacije na svakoj vrsti lokacije u slučaju epidemije hipotetičke bolesti prenosive vazdušnim putem, za koju se pretpostavlja da ima isti prirodni tok i zaraznost kao i velike boginje. Uporedili smo efikasnost kontrole provetravanja na svakoj vrsti lokacije sa drugim strategijama borbe. Zaključeno je da povećanje intenziteta ventilacije, uz primenu metoda kao što je prirodno provetravanje u učionicama, kancelarijama i domovima, u velikim gradovima predstavlja relativno delotvornu strategiju kada se radi o bolestima koje se prenose putem vazduha.

##plugins.themes.bootstrap3.article.details##

Kako citirati
GAO, Xiaolei et al. Ventilacija zgrade kao efektivna mera interventne strategije sprečavanja bolesti u gustoj mreži kontakata u zatvorenom prostoru u idealnom gradu. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 49, n. 2, p. 159-169, may 2020. ISSN 2560-340X. Dostupno na: <https://izdanja.smeits.rs/index.php/kgh/article/view/6055>. Datum pristupa: 06 june 2020
Sekcija
Tematski članci

Reference

[1] *** WHO, The Global Burden of Disease: 2004 Available: http://www.who.int/healthinfo/global burdendisease/2004 report update/en/index.html.
[2] Feldmann, H., Truly emerging – A new disease caused by a novel virus, New England Journal Medicine. 2011; 364:1561–1563.
[3] Yu IT, Li Y, WongTW, Tam W, Chan AT, Lee JHW, et al., Evidence of airborne transmission of the severe acute respiratory syndrome virus, New England Journal Medicine. 2004; 350:1731–1739.
[4] Tellier, R., Review of aerosol transmission of influenza A virus, Emerging Infectious Diseases, 2006; 12: 1657–1662. PMID:17283614
[5] Tellier, R., Aerosol transmission of influenza A virus: A review of new studies, Journal of the Royal Soci¬ety Interface. 2009; vol. 6 (Suppl 6): S783–S790.
[6] Jefferson, T, Del Mar, C. B., Dooley, L, Ferroni, E, Al-Ansary, L. A., Bawazeer, G. A., et al., Physical interventions to interruptor reduce the spread of respiratory viruses: Systematic review, BMJ. 2009; 339: b3675. doi: 10.1136/bmj.b3675 PMID:19773323
[7] Cowling, B. J., Zhou, Y., Ip, DKM, Leung, G. M., Aiello, A. E., Face masks to prevent transmission of influenza virus: A systematic review, Epidemiology and Infection. 2010; 138:449-456. doi:10.1017/S0950268809991658PMID:20092668
[8] Li, Y., Leung, G. M., Tang, J. W., Yang, X., Chao, C. Y. H., Lin, J. Z., et al., Role of ventilation in airborne transmission of infectious agents in the built environment – a multidisciplinary systematic review, Indoor Air. 2007;17: 2–18. PMID:17257148
[9] Nardell, E. A., Keegan, J., Cheney, S. A., Etkind, S. C., Airborne infection – Theoretical limits of protection achievable by building ventilation, American Review of Respiratory Disease, 1991; 144:302–306. PMID:1907115
[10] Beggs, C. B., Noakes, C. J., Sleigh, P. A., Fletcher, L. A., Siddiqi, K., The transmission of tuberculosis in confined spaces: An analytical review of alternative epidemiological models, The International Journal of Tuber¬culosis and Lung Disease, 2003; 7:1015–1026. PMID:14598959
[11] Noakes, C. J., Sleigh, P. A., Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards, Journal of the Royal Society Interface, 2009; 6 (Supp 6):S791–S800.
[12] Gao, X., Li, Y., Leung, G. M., Ventilation control of indoor transmission of airbornediseases in an urban com-munity, Indoorand Built Environment. 2009; 18:205–218.
[13] Leech, J. A., Nelson, W. C., Burnett, R. T., Aaron, S., Raizenne, M. E., It’s about time: a comparison of Canadian and American timeactivity patterns, J Expo Anal Environ Epidemiol. 2002; 12:427–432. PMID: 12415491
[14] Keeling, M. J., Eames, K. T. D., Networks and epidemic models, Journal of the Royal Society Interface, 2005; 2: 295–307.
[15] Newman, M. E. J., Spread of epidemic disease on networks, Physical Review E. 2002; 66: No. 016128
[16] Lin, G., Jia, X., Ouyang, Q.. Predict SARS infection with the small world network model, Beijing Da Xue Xue Bao. 2003; 35: 66–69. PMID:12914222
[17] Moore, C., Newman, M. E. J., Epidemics and percolation in small-world networks, Physical Review E. 2000; 61:5678–5682.
[18] Eubank, S., Guclu, H., Kumar, V. S., Marathe, M. V., Srinivasan, A., Toroczkai, Z., et al., Modelling disease out¬breaks in realistic urban social networks. Nature, 2004; 429:180–184. PMID:15141212
[19] Eubank, S., Kumar, V. S., Marathe, M. V., Srinivasan, A., Wang, N., Structure of social contact networks and their impact on epidemics, AMS-DIMACS Special Volume on Epidemiology. 2006; 70:181–213.
[20] Edmunds, W. J., O’Callaghan, C. J., Nokes, D. J., Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections, Proceedings of the Royal Society B: Biological Sciences. 1997; 264:949–957. PMID:9263464
[21] Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., et al., Social contacts and mixing pat-terns relevant to the spread of infectious diseases, PLoS Med. 2008; 5: e74. doi:10.1371/journal.pmed.0050074PMID:18366252
[22] McPherson, M., Smith-Lovin, L., Cook, J. M., Birds of a feather: Homophily in social networks, Annual Review of Sociology. 2001; 27:415–444.
[23] Read, J. M., Eames, K. T. D., Edmunds, W. J., Dynamic social networks and the implications for the spread of infectious disease, Journal of the Royal Society Interface. 2008; 5:1001–1007.
[24] Wells, W. F., Airborne contagion and air hygiene: An ecological study of droplet infections, Harvard Univ. Press, Cambridge, MA. 1955. pp. 423.
[25] Chen, S. C., Chang, C. F., Liao, C. M., Predictive models of control strategies involved in containing indoor air¬borne infections, Indoor Air. 2006; 16:469–481. PMID:17100668
[26] Riley, S., Ferguson, N. M., Smallpox Transmission and Control: Spatial Dynamics in Great Britain, Proc Natl Acad Sci USA. 2006; 103:12637–12642 PMID:16894173
[27] Qian, H., Li, Y., Nielsen, P. V., Huang, X. H., Spatial distribution of infection risk of SARS transmission in a hos¬pital ward, Building and Environment. 2009; 44:1651–1658.
[28] Rudnick, S. N., Milton, D. K., Risk of indoor airborne infection transmission estimated from carbon dioxide concentration, Indoor Air. 2003; 13: 237–245. PMID:12950586
[29] Gammaitoni, L., Nucci, M. C., Using a mathematical model to evaluate the efficacy of TB control measures, Emerging Infectious Diseases. 1997; 3: 335–342. PMID:9284378
[30] Xie, X., Evaporation and Movement of Respiratory Droplets in Indoor Environments, PhD thesis, The University of Hong Kong. 2008. pp. 196.
[31] Morawska, L., Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006; 16: 335–347. PMID:16948710
[32] Ferguson, N. M., Cummings, D. A. T,, Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., et al., Strategies for con¬taining an emerging influenza pandemic in Southeast Asia, Nature, 2005; 437:209–214. PMID: 16079797
[33] Li, Y., Yu, I. T. S., Xu, P., Lee, J. H. W., Wong, T. W., Ooi, P. L., et al., Predicting super spreading events during the 2003 severe acute respiratorysyndrome epidemics in Hong Kong and Singapore, American Journal of Epidemiology, 2004; 160: 719–728. PMID:15466494
[34] Lowen, A. C., Mubareka, S., Steel, J., Palese, P., Influenza virus transmission is dependent on relative humid¬ity and temperature, PLoS Pathogens, 2007; 3: e151.
[35] Gani, R., Leach, S., Transmission potential of smallpox in contemporary populations, Nature, 2001; 414: 748–751 PMID:11742399
[36] Ferguson, N. M., Keeling, M. J., Edmunds, W. J., Gani, R., Grenfell, B. T., Anderson, R. M., et al., Planning for small¬pox outbreaks, Nature, 2003; 425:681–685. PMID:14562094
[37] Escombe, A. R., Oeser, C. C., Gilman, R. H., Navincopa, M., Ticona, E., Pan, W., et al., Natural ventilation for the prevention of airborne contagion, PLoS Med. 2007; 4: e68. PMID:17326709
[38] Allard, F., editor, Natural ventilation in buildings: A design handbook, London: James & James. 1998.
[39] Atkinson, J., Chartier, Y., Pessoa-Silva, C., Jensen, P., Li, Y., Seto, W., editors, Natural Ventilation for Infection Control in Health–Care Settings – WHO Guidelines, World Health organization, 2009.
[40] Chao, C. Y. H., Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study, Building and Environment. 2001; 36, 999–1007.
[41] Chao, C. Y. H., Tung, T. C., An empirical model for outdoor contaminant transmission into residential build-ings and experimental verification, Atmospheric Environment, 2001; 35,1585–1596.
[42] Lee, S. C., Chang, M., Indoor and outdoor air quality investigation at schools in Hong Kong, Chemosphere, 2000; 41,109–113. PMID:10819186
[43] Anderson, R. M., May, R. M., Infectious Diseases of Humans: Dynamics and Control. Oxford, New York, Oxford University Press. 1991. pp. 688.
[44] Riley, S., Large-scale spatial-transmission models of infectious disease, Science, 2007; 316:1298¬1301. PMID:17540894
[45] Roy, C. J., Milton, D. K., Airborne transmission of communicable infection – the elusive pathway, New England Journal Medicine, 2004; 350:1710–1712.
[46] Tang, J. W., Li, Y., Eames, I., Chan, P. K., Ridgway, G. L., Factors involved in the aerosol transmission of infec¬tion and control of ventilation in healthcare premises, Journal of Hospital Infection, 2006; 64:100–114. PMID:16916564
[47] Gao, X., Wei, J., Cowling, B. J., Li, Y., Potential impact of a ventilation intervention for influenza in the context of a dense indoor contact network in Hong Kong, Science of the Total Environment, 2016; 569–570: 373–381 doi:10.1016/i.scitotenv.2016.06.179PMID:27351145
[48] Liao, C. M., Chen, S. C., Chang, C. F., Modelling respiratory infection control measure effects, Epidemiology and Infection, 2008; 136:299–308. PMID:17475088
[49] Riley, E. C., Murphy, G., Riley, R. L., Airborne spread of measles in a suburban elementary school, American Journal of Epidemiology, 1978; 107:421–432. PMID:665658