Eksperimenti sa samo-organizovanom simulacijom kretanja infektivnih aerosola u objektima

##plugins.themes.bootstrap3.article.main##

Ljubomir Janković, Prof. dr

Apstrakt

Krajnji cilj održivosti objekata dobio je dodatnu novu dimenziju kada je početkom 2020. godine došlo do brzog globalnog širenja zarazne bolesti uzrokovane koronavirusom nazvanim KOVID-19. Određeni podaci pokazuju da, pored ličnog kontakta, do prenosa bolesti dolazi putem kapljica/aerosola prenošenih vazduhom, a proizvedenih disanjem, govorom, kašljanjem ili kijanjem. U tom pogledu sistemi za grejanje, ventilaciju i klimatizaciju objekata mogu da imaju važnu ulogu, pošto mogu da doprinesu povećanju ili smanjenju rizika od prenosa zaraze. Međutim, kretanje infektivnih aerosola u objektima ne razume se u dovoljnoj meri. U ovom članku uvodi se metoda spontanog modeliranja po sistemu „sa dna naviše“ kretanja infektivnih aerosola u zatvorenim prostorima upotrebom fizičkog „motora“ za simulaciju, i daje se izveštaj o jednostavnim eksperimentima simulacija. Rezultati pokazuju kako najmanje kapljice koje su dovoljno velike da sadrže virus mogu da ostanu suspendovane u vazduhu tokom dužeg vremenskog perioda; da turbulentan tok vazduha može da doprinese tome da infektivni aerosoli ostanu u prostoriji; i da jednosmeran tok vazduha može da doprinese čišćenju prostorije od infektivnih aerosola. Model uveden u ovom članku predstavlja polaznu tačku za dalji razvoj i širenje saznanja o kretanju infektivnih aerosola u objektima, te time i veću održivost u projektovanju objekata. 

##plugins.themes.bootstrap3.article.details##

Kako citirati
JANKOVIĆ, Ljubomir. Eksperimenti sa samo-organizovanom simulacijom kretanja infektivnih aerosola u objektima. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 50, n. 2, p. 31-39, may 2021. ISSN 2560-340X. Dostupno na: <https://izdanja.smeits.rs/index.php/kgh/article/view/6603>. Datum pristupa: 22 sep. 2021
Sekcija
Tematski članci

Reference

[1] *** World Health Organization. WHO COVID-19 Dashboard. Available online: https://who.sprinklr.com/
(accessed on 26 April 2020).
[2] *** ASHRAE. ASHRAE Position Document on Infectious Aerosols. Available online: https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf (accessed on 26 April 2020).
[3] Wan, G.-H.; Wu, C.-L.; Chen, Y.-F.; Huang, S.-H.; Wang, Y.-L.; Chen, C.-W., Particle Size Concentration Distribution and Influences on Exhaled Breath Particles in Mechanically Ventilated Patients. PLoS ONE 2014, 9, e87088. [CrossRef] [PubMed]
[4] Ward, P., COVID-19/SARS-CoV-2 Pandemic. Available online: https://www.fpm.org.uk/blog/covid-19-sarscov-2-pandemic/ (accessed on 11 April 2020).
[5] Liu, F.; Qian, H.; Zheng, X.; Song, J.; Cao, G.; Liu, Z., Evaporation and dispersion of exhaled droplets in stratified environment. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 042059. [CrossRef]
[6] Tang, J.W.; Nicolle, A.D.; Klettner, C.A.; Pantelic, J.; Wang, L.; Suhaimi, A.B.; Tan, A.Y.L.; Ong, G.W.X.; Su, R.; Sekhar, C.; et al., Airflow Dynamics of Human Jets: Sneezing and Breathing-Potential Sources of Infectious Aerosols. PLoS ONE 2013, 8, e59970. [CrossRef] [PubMed]
[7] Xie, X.; Li, Y.; Chwang, A.T.Y.; Ho, P.L.; Seto, W.H. How far droplets can move in indoor environments-revisiting the Wells evaporation-falling curve. Indoor Air 2007, 17, 211–225. [CrossRef] [PubMed]
8. Wells, W.F. Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections; Commonwealth Fund: New York, NY, USA, 1955.
[8] Bourouiba, L., Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA 2020. [CrossRef] [PubMed]
[9] Baron, P., Generation and Behavior of Airborne Particles (Aerosols). Available online: https://www.cdc.gov/niosh/topics/aerosols/pdfs/Aerosol_101.pdf (accessed on 26 April 2020).
[10] Xie, X.; Li, Y.; Sun, H.; Liu, L., Exhaled droplets due to talking and coughing. J. Royal Soc. Interface 2009, 6. [CrossRef] [PubMed]
[11] Wells, W.F., On the mechanics of droplet nuclei infection. Am. J. Epidemiol. 1948, 47, 1–10. [CrossRef][PubMed]
[12] Pantelic, J.; Tham, K.W., Assessment of the mixing air delivery system ability to protect occupants from the airborne infectious disease transmission using Wells–Riley approach. HVAC&R Res. 2012, 18, 562–574. [CrossRef]
[13] Carlson, J.A.; Jaffe, A.; Wiles, A., (Eds.) The Millennium Prize Problems; American Mathematical Society for the Clay Mathematics Institute: Providence, RI, USA; Cambridge, MA, USA, 2006; ISBN 978-0-8218-3679-8.
[14] Jankovic, L., Modelling Computational Fluid Dynamics with Swarm Behaviour. In Proceedings of the 4th IBPSA-England Conference on Building Simulation and Optimization, Cambridge, UK, 11–12 September 2018; IBPSA England: London, UK, 2018; pp. 112–118.
[15] *** IES. VE 2019. Available online: https://www.iesve.com/VE2019 (accessed on 18 March 2018).
[16] *** ANSYS. COVID-19 Simulation Solutions | Ansys. Available online: https://www.ansys.com/about-ansys/covid-19-simulation-insights (accessed on 26 April 2020).
[17] Vuorinen, V.; Aarnio, M.; Alava, M.; Alopaeus, V.; Atanasova, N.; Auvinen, M.; Balasubramanian, N.; Bordbar, H.; Erästö, P.; Grande, R.; et al., Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 2020, 130, 104866. [CrossRef]
[18] *** Unity Technologies. Unity Game Development Platform. Available online: https://unity3d.com (accessed on 3 March 2020).
[19] *** ASHRAE. 2019 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applications; ASHRAE: Atlanta, GA, USA, 2019; ISBN 978-1-947192-13-3.
[20] Walker, C.M.; Ko, G., Effect of Ultraviolet Germicidal Irradiation on Viral Aerosols. Environ. Sci. Technol. 2007, 41, 5460–5465. [CrossRef] [PubMed]
[21] Littlefield, D. (Ed.) Metric Handbook: Planning and Design Data, 4th ed.; Routledge: London, UK; New York, NY, USA, 2012; ISBN 978-1-85617-806-8.