Održivi razvoj i trendovi geotermalne energije

##plugins.themes.bootstrap3.article.main##

Rudolf Tot

Apstrakt

Brz rast stanovništva kao i svakodnevno oslanjanje na moderne tehnologije dovode do sve veće potražnje za pouzdanim energetskim izvorima. Pored toga se sve veći fokus stavlja na održivost okruženja i što većem korišćenju obnovljivih izvora energije. Efektivno rešavanje ovih problema uključuje sinegiju korišćenja obnovljivih izvora energije i značajno povećanje efikasnosti trenutnih tehnologija. Geotermalna energija kao obnovljivi izvor energije (OIE) ima potencijal da obezbedi značajne količine električne energije, grejanja i hlađenja. Ovaj rad elaborira metode iskorišćavanja energije korišćenjem različitih geotermalnih tehnologija. Takođe se razmatraju različite metode poboljšanja performansi, kao i integracija geotermalne energije sa drugim obnovljivim izvorima energije. Uticaj na životnu sredinu i ekonomska održivost tehnologija su takođe mapirani, i prikazane su prednosti i mane tehnologija kao i mogućnosti za buduća poboljšanja.

##plugins.themes.bootstrap3.article.details##

Kako citirati
TOT, Rudolf. Održivi razvoj i trendovi geotermalne energije. KGH – Klimatizacija, grejanje, hlađenje, [S.l.], v. 51, n. 4, p. 55-63, dec. 2022. ISSN 2560-340X. Dostupno na: <https://izdanja.smeits.rs/index.php/kgh/article/view/6838>. Datum pristupa: 04 feb. 2023
Sekcija
Tematski članci

Reference

M. Kheshti and Xiaoning Kang, “Geothermal Energy, a key point in Energy and Development in China,” in International Conference on Renewable Power Generation (RPG 2015), 2015, vol. 2015, no. CP679, pp. 4 .-4 ., doi: 10.1049/cp.2015.0576.
H. Kulasekara and V. Seynulabdeen, “A Review of Geothermal Energy for Future Power Generation,” in 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Sep. 2019, pp. 223–228, doi: 10.1109/ICAEE48663.2019.8975470.
F. A. Ngala, G.M.; Oumarou, M.B.; Oluwole, “Review of Geothermal Energy Technology and its Potential for Power Generation in Borno Basin,Nigeria,” Ann. Borno, vol. XXV, no. December, pp. 59–67, 2013, [Online]. Available: http://www.unimaid.edu.ng/.
J. Limberger et al., “Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization,” Renew. Sustain. Energy Rev., vol. 82, no. October 2017, pp. 961–975, 2018, doi: 10.1016/j.rser.2017.09.084.
A. Anderson and B. Rezaie, “Geothermal technology: Trends and potential role in a sustainable future,” Appl. Energy, vol. 248, no. March, pp. 18–34, 2019, doi: 10.1016/j.apenergy.2019.04.102.
G. W. Huttrer, “Geothermal Power Generation in the World 2015-2020 Update Report,” Proc. World Geotherm. Congr. 2020, pp. 1–17, 2020, [Online]. Available: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01017.pdf.
R. Bertani, “Geothermal power generation in the world 2010–2014 update report,” Geothermics, vol. 60, pp. 31–43, Mar. 2016, doi: 10.1016/j.geothermics.2015.11.003.
R. Shortall et al., “Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks,” Renew. Sustain. Energy Rev., vol. 53, no. October 2017, pp. 391–406, Apr. 2015, doi: 10.1016/j.rser.2014.12.020.
P. Olasolo, M. C. Juárez, M. P. Morales, S. D´Amico, and I. A. Liarte, “Enhanced geothermal systems (EGS): A review,” Renew. Sustain. Energy Rev., vol. 56, pp. 133–144, Apr. 2016, doi: 10.1016/j.rser.2015.11.031.
D. Moya, C. Aldás, and P. Kaparaju, “Geothermal energy: Power plant technology and direct heat applications,” Renew. Sustain. Energy Rev., vol. 94, no. June, pp. 889–901, Oct. 2018, doi: 10.1016/j.rser.2018.06.047.
G. W. Braun and H. K. McCluer, “Geothermal power generation in United States,” Proc. IEEE, vol. 81, no. 3, pp. 434–448, Mar. 1993, doi: 10.1109/5.241485.
R. DiPippo, Geothermal Power Plants. Elsevier, 2016.
F. A. Monroy Parada, “Geothermal binary cycle power plant principles, operation and maintenance,” United Nations Univrsity, 2013.
P. Bayer, L. Rybach, P. Blum, and R. Brauchler, “Review on life cycle environmental effects of geothermal power generation,” Renew. Sustain. Energy Rev., vol. 26, pp. 446–463, Oct. 2013, doi: 10.1016/j.rser.2013.05.039.
S. Jalilinasrabady, R. Itoi, P. Valdimarsson, G. Saevarsdottir, and H. Fujii, “Flash cycle optimization of Sabalan geothermal power plant employing exergy concept,” Geothermics, vol. 43, pp. 75–82, Jul. 2012, doi: 10.1016/j.geothermics.2012.02.003.
R. DiPippo, “Geothermal energy Electricity generation and environmental impact,” Energy Policy, vol. 19, no. 8, pp. 798–807, Oct. 1991, doi: 10.1016/0301-4215(91)90050-X.
C. R. Chamorro, M. E. Mondéjar, R. Ramos, J. J. Segovia, M. C. Martín, and M. A. Villamañán, “World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies,” Energy, vol. 42, no. 1, pp. 10–18, Jun. 2012, doi: 10.1016/j.energy.2011.06.005.
R. Dipippo, “Small Geothermal Power Plants: Design, Performance and Economics,” GHC Bull., no. June, pp. 1–8, 1999, [Online]. Available: http://www.geothermalcommunities.eu/assets/elearning/7.10.art1.pdf.
Z. Molivanović, P. Ljubiša, S. Milovanović Dumonjić, A. Milašinović, and D. Knežević, Sustainable Energy Planning: Technologies and Energy Efficiency. Istraživački centar DQM, Prijevor, Srbija, 2017.
M. Kanoglu and A. Bolatturk, “Performance and parametric investigation of a binary geothermal power plant by exergy,” Renew. Energy, vol. 33, no. 11, pp. 2366–2374, Nov. 2008, doi: 10.1016/j.renene.2008.01.017.
H. D. Madhawa Hettiarachchi, M. Golubovic, W. M. Worek, and Y. Ikegami, “Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources,” Energy, vol. 32, no. 9, pp. 1698–1706, Sep. 2007, doi: 10.1016/j.energy.2007.01.005.
P. Valdimarsson, “Geothermal power plant cycles and main components,” no. March, 2016.
J. Bao and L. Zhao, “A review of working fluid and expander selections for organic Rankine cycle,” Renew. Sustain. Energy Rev., vol. 24, pp. 325–342, Aug. 2013, doi: 10.1016/j.rser.2013.03.040.
S. Quoilin, S. Declaye, A. Legros, G. Ludovic, and V. Lemort, “Working fluid selection and operating maps for Organic Rankine Cycle expansion machines,” Int. Compress. Eng. Conf. Purdue, pp. 1–10, 2012, [Online]. Available: https://orbi.uliege.be//bitstream/2268/128663/1/Purdue Paper SQ120416.pdf.
M. Astolfi, M. C. Romano, P. Bombarda, and E. Macchi, “Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization,” Energy, vol. 66, pp. 423–434, Mar. 2014, doi: 10.1016/j.energy.2013.11.056.
D. Mikielewicz and J. Mikielewicz, “A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP,” Appl. Therm. Eng., vol. 30, no. 16, pp. 2357–2362, Nov. 2010, doi: 10.1016/j.applthermaleng.2010.05.035.
S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, and V. Lemort, “Techno-economic survey of Organic Rankine Cycle (ORC) systems,” Renew. Sustain. Energy Rev., vol. 22, pp. 168–186, Jun. 2013, doi: 10.1016/j.rser.2013.01.028.
R. DiPippo and I. Thain, “Hybrid Geothermal-Biomass Power Plants: Applications, Designs and Performance Analysis,” Proc. World Geotherm. Congr. 2015 Melbourne, Aust., 2015, [Online]. Available: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/26020.pdf.
M. Ayub, A. Mitsos, and H. Ghasemi, “Thermo-economic analysis of a hybrid solar-binary geothermal power plant,” Energy, vol. 87, pp. 326–335, Jul. 2015, doi: 10.1016/j.energy.2015.04.106.
A. G. Olabi, M. Mahmoud, B. Soudan, T. Wilberforce, and M. Ramadan, “Geothermal based hybrid energy systems, toward eco-friendly energy approaches,” Renew. Energy, vol. 147, pp. 2003–2012, Mar. 2020, doi: 10.1016/j.renene.2019.09.140.
C. Zhou, E. Doroodchi, and B. Moghtaderi, “An in-depth assessment of hybrid solar–geothermal power generation,” Energy Convers. Manag., vol. 74, pp. 88–101, Oct. 2013, doi: 10.1016/j.enconman.2013.05.014.
C. Zhou, E. Doroodchi, and B. Moghtaderi, “Assessment of geothermal assisted coal-fired power generation using an Australian case study,” Energy Convers. Manag., vol. 82, pp. 283–300, Jun. 2014, doi: 10.1016/j.enconman.2014.03.011.
S. Moret, E. Peduzzi, L. Gerber, and F. Maréchal, “Integration of deep geothermal energy and woody biomass conversion pathways in urban systems,” Energy Convers. Manag., vol. 129, pp. 305–318, Dec. 2016, doi: 10.1016/j.enconman.2016.09.079.
F. van der Meer, C. Hecker, F. van Ruitenbeek, H. van der Werff, C. de Wijkerslooth, and C. Wechsler, “Geologic remote sensing for geothermal exploration: A review,” Int. J. Appl. Earth Obs. Geoinf., vol. 33, no. 1, pp. 255–269, Dec. 2014, doi: 10.1016/j.jag.2014.05.007.
K. V. Wong and N. Tan, “Feasibility of Using More Geothermal Energy to Generate Electricity,” J. Energy Resour. Technol., vol. 137, no. 4, pp. 1–6, Jul. 2015, doi: 10.1115/1.4028138.
F.-Z. Zhang, P.-X. Jiang, and R.-N. Xu, “System thermodynamic performance comparison of CO2-EGS and water-EGS systems,” Appl. Therm. Eng., vol. 61, no. 2, pp. 236–244, Nov. 2013, doi: 10.1016/j.applthermaleng.2013.08.007.
K. Pruess, “Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon,” Geothermics, vol. 35, no. 4, pp. 351–367, Aug. 2006, doi: 10.1016/j.geothermics.2006.08.002.
J. B. Randolph and M. O. Saar, “Combining geothermal energy capture with geologic carbon dioxide sequestration,” Geophys. Res. Lett., vol. 38, no. 10, p. n/a-n/a, May 2011, doi: 10.1029/2011GL047265.
M. Soltani, P. Farzanehkhameneh, F. Moradi Kashkooli, A. Al-Haq, and J. Nathwani, “Optimization and energy assessment of geothermal heat exchangers for different circulating fluids,” Energy Convers. Manag., vol. 228, no. August 2020, p. 113733, Jan. 2021, doi: 10.1016/j.enconman.2020.113733.
M. Soltani et al., “Environmental, economic, and social impacts of geothermal energy systems,” Renew. Sustain. Energy Rev., vol. 140, no. January, p. 110750, Apr. 2021, doi: 10.1016/j.rser.2021.110750.
T. M. Hunt, Five Lectures on Environmental Effects of Geothermal Utilization, no. 1. 2001.
A. Manzella et al., “Environmental and social aspects of geothermal energy in Italy,” Geothermics, vol. 72, no. November 2017, pp. 232–248, Mar. 2018, doi: 10.1016/j.geothermics.2017.11.015.
R. DiPippo, “Environmental Impact of Geothermal Power Plants,” in Geothermal Power Plants, Elsevier, 2016, pp. 657–684.
R. Allis, C. Bromley, and S. Currie, “Update on subsidence at the Wairakei–Tauhara geothermal system, New Zealand,” Geothermics, vol. 38, no. 1, pp. 169–180, Mar. 2009, doi: 10.1016/j.geothermics.2008.12.006.
K.-H. Kim, J. Ree, Y. Kim, S. Kim, S. Y. Kang, and W. Seo, “Assessing whether the 2017 M w 5.4 Pohang earthquake in South Korea was an induced event,” Science (80-. )., vol. 360, no. 6392, pp. 1007–1009, Jun. 2018, doi: 10.1126/science.aat6081.
K. F. Evans, A. Zappone, T. Kraft, N. Deichmann, and F. Moia, “A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe,” Geothermics, vol. 41, pp. 30–54, Jan. 2012, doi: 10.1016/j.geothermics.2011.08.002.
R. DiPippo, “Geothermal power plants: Evolution and performance assessments,” Geothermics, vol. 53, pp. 291–307, Jan. 2015, doi: 10.1016/j.geothermics.2014.07.005.
K. Li, H. Bian, C. Liu, D. Zhang, and Y. Yang, “Comparison of geothermal with solar and wind power generation systems,” Renew. Sustain. Energy Rev., vol. 42, pp. 1464–1474, Feb. 2015, doi: 10.1016/j.rser.2014.10.049.