DinamiÄki prenos toplote u zidovima: ograniÄenja meraÄa toplotnog protoka
##plugins.themes.bootstrap3.article.main##
Apstrakt
Prenos toplote u zidovima može se modelovati toplotnim mrežama, koje predstavljaju energetski bilans u sistemu koga formiraju zid i njegovo okruženje. Kontinualni model se može izraziti kao beskonaÄan niz diferencijalnih algebarskih jednaÄina. BeskonaÄan skup jednaÄina može se poreÄ‘ati u prikazu prostora stanja i na osnovu toga se može dobiti funkcija prenosa matrice. U praktiÄno svakoj primeni, ovaj model se mora diskretizovati u prostoru, to jest, red modela se mora smanjiti odabirom konaÄnog skupa diferencijalnih algebarskih jednaÄina. Funkcija prenosa matrice može se iskoristiti za dobijanje kriterijuma za odreÄ‘ivanje modela manjeg (nižeg) reda, koji se može koristiti za modelovanje tokova prenosa toplote kroz zid izmerenih pomoću meraÄa toplotnog protoka (toplotnog fluksa). Funkcija prenosa, koja se odnosi na toplotni fluks kroz zid, nije potpuno odgovarajuća i korišćenje meraÄa toplotnog fluksa jeste ograniÄeno frekvencijom ulaznog signala.
##plugins.themes.bootstrap3.article.details##
Reference
[2] J. Crassidis and J. Junkins, Optimal Estimation of Dynamic Systems, Second Edition, Taylor & Francis, 2011.
[3] G. Strang, Computational Science and Engineering, Wellesley-Cambridge Press, 2007.
[4] G. Fraisse, C. Viardot, O. Lafabrie and G. Achard, "Development of a simplified and accurate building model based on electrical analogy," Energy and Buildings, vol. 34, no. 10, pp. 1017-1031, 2002.
[5] A. Ramallo-González, M. Eames and D. Coley, "Lumped parameter models for building thermal modelling: An analytic approach to simplifying complex multi-layered constructions," Energy and Buildings, vol. 60, pp. 174-184, 2013.
[6] A. Rabl, "Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use," Journal of Solar Energy Engineering, vol. 110, no. 1, pp. 52-66, 1988.
[7] A. Foucquier, S. Robert, F. Suard, L. Stéphan and A. Jay, "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, vol. 23, pp. 272-288, 2013.
[8] I. Hazyuk, C. Ghiaus and D. Penhouet, "Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part I - Building modeling," Building and Environment, vol. 51, pp. 379-387, 2012.
[9] I. Naveros, P. Bacher, D. Ruiz, M. Jiménez and H. Madsen, "Setting up and validating a complex model for a simple homogeneous wall," Energy and Buildings, vol. 70, pp. 303-317, 2014.
[10] I. Naveros, M. J. Jiménez and M. R. Heras, "Analysis of capabilities and limitations of the regression method based in averages, applied to the estimation of the U value of building component tested in Mediterranean weather," Energy and Buildings, vol. 55, pp. 854-872, 2012.
[11] C. Ghiaus, "Causality issue in the heat balance method for calculating the design heating and cooling load," Energy, vol. 50, pp. 292-301, 2013.