Eksergija kao mera održivosti energetskog sistema

##plugins.themes.bootstrap3.article.main##

Peter Novak

Apstrakt

Eksergija je mera kvaliteta energije. Količine eksergije u nosiocima energije se dosta razlikuju. obično cena uključuje samo vrednost količine energije, a ne i njen kvalitet. eksergija je samo deo energije koji je raspoloživ za upotrebu ili rad. za različite svrhe potrebna nam je energije sa različitom količinom eksergije: za grejanje i hlađenje potrebna je energetska mešavina manje količine eksergije i većeg dela anergije. Prelazak na održiv energetski sistem, koji je bez emisije gasova sa efektom staklene bašte i koji je zasnovan na obnovljivoj energiji, otvara pitanja kako vrednovati eksergiju iz solarne energije.Solarna energija u svim oblicima (iradijacija, vodni tokovi, vazduh i biomasa) sastoji se od skoro 100% eksergije. Solarna energija je besplatna, ali sistemi za njeno pretvaranje nisu. Da bi se maksimalno iskoristila solarna eksergija potreban je održivi energetski sistem koji u velikoj meri koristi postojeću infrastrukturu i postojeće ili nove tehnologije za pretvaranje energije. Svi se slažu da su nam potrebna četiri glavna nosioca energije koja se danas koriste: električna energija, gasovita goriva, tečna goriva i čvrsta goriva.Našu viziju predstavlja novi održivi energetski sistem (OES) koji se zasniva na korišćenju solarne i planetarne energije za proizvodnju obnovljive električne energije kao osnove za proizvodnju vodonika. Vodonik je sirovina za recikliranje ugljenika iz biomase od koga se prave sintetički metan i metanol. Predloženi OES se zasniva na postojećoj infrastrukturi i poznatim hemijskim procesima. U pogledu raspoloživosti obnovljivih izvora energije (OIE), on nema ograničenja i bezopasan je u poređenju sa sadašnjom upotrebom fosilnih goriva. Predloženi OES se sastoji od tri glavna nosioca eksergije: solarne električne energije, sintentičkog metana (CH4) i sintetičkog metanola (CH3OH).

##plugins.themes.bootstrap3.article.details##

Kako citirati
NOVAK, Peter. Eksergija kao mera održivosti energetskog sistema. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 48, n. 1, p. 19-40, dec. 2017. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/3286>. Datum pristupa: 12 dec. 2018
Sekcija
Članci

Reference

[1] *** ECO Design Directive, 2009/125/EC; Renewable Energy Directive 2009/28/EC; Energy Efficiency Directive 2012/27/EU; EPDB 2010/31/EU; Energy Union /*COM/2015/080final*/, Closing the loop – An EU action plan for the circular economy, /COM (2015) 614 final/
[2] http://eur-lex.europa.eu/resource.html?uri=cellar:1bd46c90-bdd4-11e4-bbe1-01aa75ed71a1.0001.03/DOC_1&format=PDF.
[3] http://eur-lex.europa.eu/resource.html?uri=cellar:8a8ef5e8-99a0-11e5-b3b7-01aa75ed71a1.0012.02/DOC_1&format=PDF.
[4] Kabelac, S., Exergy of solar radiation’ Int. J. Energy Technology and Policy, 2005, Vol. 3, Nos. 1/2, pp. 115–122.
[5] Zamfirescu, C., I. Dincer, How much exergy one can obtain from incident solar radiation, J. of Applied Physics; 2009, 105, 02291.
[6] Neri, M. et al., Computing the exergy of solar radiation from real radiation data on the Italian area, 12th Joint European Thermodynamics Conference, Brescia July 1–5, 2013, pp. 452–457.
[7] Davidsson, S., Life Cycle Exergy Analysis of Wind Energy system, http://uu.diva-portal.org/smash/get/diva2:435510/FULLTEXT01.
[8] Rosen, A. M., A. C. Bulucea, Using Exergy to Understand and Improve the Efficiency of Electrical Power System, J. Entropy 2009, 11, 820-835; doi:10.3390/e11040820.
[9] Rant, Z., Strojniški vestnik, Ljubljana, 1955, No. 1, pp. 1–3.
[10] *** The exergy calculator: http://www.exergoecology.com/
[11] Jacobson, M. Z., M. A. Delucchi, Providing all global energy with wind, water, and solar power, Part I, Part II: Technologies, energy resources, quantities and areas of infrastructure, and materials, Energy Policy 39(2011) 1159.
[12] https://en.wikipedia.org/wiki/Biomass, 04.08. 2016;
[13] https://en.wikipedia.org/wiki/Geothermal_energy, 04.08.2016
[14] US DOE: U.S. Energy Information Administration/AEO2017 Levelized Costs /
[15] https://en.wikipedia.org/wiki/Wind_wave, 29.05.2016.
[16] Novak, P., The way to the energy sustainable world, Energy and Buildings, 14 (1990) 249–256; Sustainable Energy System with Zero Emissions of GHG for Cities and Countries, Energy and Buildings (2015), http://dx.doi.org/10.1016/j.enbuild.2014.10.085.
[17] Goe, M., G. Gaustad, Strengthening the case for recycling photovoltaic: An energy payback analysis; Applied Energy 120 (2014), pp. 41–48.
[18] Yue, D., F. You, S. B. Darling (2014), Domestic and overseas manufacturing scenarios of silicon-based photovoltaic: Life cycle energy and environmental comparative analysis, Solar Energy 105, pp. 669–678.
[19] Krebs, F. C. (2009), Fabrication and processing of polymer solar cells: a review of printing and coating techniques, Solar Energy Materials and Solar Cells 93 (4).
[20] Bhandari, K. P., J. M. Collier, R. J. Ellingson, D. S. Apul (2015), Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews 47, pp. 133–141.
[21] Varun, I. K., Bhat, Ravi Prakash, Life Cycle Analysis of Run-of River Small Hydro Power Plants in India, The Open Renewable Energy Journal, 2008, 1, pp. 11–16.
[22] Self, S. J., B. V. Reddy, M. A. Rosen, Energy and exergy analyses of geothermal plants with and without re-injection, Research J. of Environmental Science 9 (2), 2015, pp. 74–87.
[23] Bhandari, K. P, J. M. Collier, R. J. Ellingson, D. S. Apul, Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaicsystems: A systematic review and meta-analysis, Renewable and Sustainable Energy Reviews Volume 47, July 2015, Pages 133–141.
[24] http://tc4.iec.ch/FactSheetPayback.pdf Comparing Energy Options, 6.8.2016.
[25] Novak, P., Full cycle from solar irradiation to the ethanol, sugar cane to ethanol, Brasilia, EEA Seminaron Biomass, Copenhagen 2010; EEA Seminar: Transport, Mobility and Environment, Ljubljana, 02.10.2012.
[26] Kewen, Li, Comparison of geothermal with solar and wind power generation systems, Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11–13, 2013.
[27] Pandeyr, S., H. Saini, A techno-energetic review on hydrogen production using wind energy, International Journal of Innovation and Scientific Research, Vol. 11, No. 2 Nov. 2014, pp. 312–321.
[28] Kimball, J., Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production, 17 October 2011; http://8020vision.com/2011/10/17/energy-return-on-investment-eroi-for-u-s-oil-and-gas-discovery-and-production/, 07.08.2016.
[29] Gupta, A. K, C. A. S. Hall, A Review of the Past and Current State of EROI Data, Sustainability 2011, 3, pp. 1796–1809.
[30] https://de.wikipedia.org/wiki/Power-to-Gas, 07.08.2016.
[31] http://www.biofuelstp.eu/factsheets/methanol-fact-sheet.html, 07.08.2016.
[32] Wall, G., M. Gong, On exergy and sustainable development — Part 1: Conditions and concepts, Exergy Int. J. 1(3) (2001), pp. 128–145; Part 2: Indicators and methods/Exergy Int. J. 1(4) (2001), pp. 217–233.
[33] Sciuba, E., G. Wall, A brief Commented History of Exergy From the Beginnings to 2004, Int. J. of Thermodynamics, Vol. 10 (No. 1), pp. 1–26, March 2007 ISSN 1301-9724.
[34] http://www.greenpeace.org/international/Global/international/publications/climate/2015/E nergy-Revolution-2015-Full.pdf, 07.08.2017, pg. 44.
[35] Zhen, X., W. Yang, An overview of methanol as an internal combustion engine fuel, Renewable and Sustainable Energy Reviews, December 2015, DOI: 10.1016/jrser. 2015.07.083.
[36] Barnhart, C. J., M. Dale, A. R. Brandt, S. M. Bensonab, The energetic implications of curtailing versus storing solar- and wind-generated electricity, Energy Environ. Sci., 2013, 6, 2804.
[37] Ferroni, F., R. J. Hopkirk, Energy Return on Energy Invested (ERoEI) for photovoltaic solar system in regions of moderate insolation, J. Energy Policy 94 (2016), pp. 336–344.