Mogućnost primene plafonskog sistema grejanja za zagrevanje sportskih dvorana

##plugins.themes.bootstrap3.article.main##

Dragan Cvetković Aleksandar Nešović Jasmina Skerlić Danijela Nikolić

Apstrakt

Niskotemperaturni panelni sistem grejanja nudi posebne pogodnosti u smislu toplotnog komfora i potrošnje energije, što omogućava njegovu kombinaciju sa nižim temperaturnim izvorima (npr.: toplota zemlje). Ovakvi sistemi, međutim, nisu pogodni za grejanje velikih objekata, kao što su sportske sale. U ovoj studiji se analizira mogućnost implementacije panelnog plafonskog sistema grejanja sa gasnim kotlom za grejanje sportske dvorane u Beogradu, Srbija. Cilj rada je da se pokaže kako temperatura na ulazu u plafonski panel utiče na ambijentalne uslove u sportskoj sali, pri čemu je razmatran temperaturni opseg od 40 do 90°. U radu je analizirano ponašanje navedenog sistema grejanja i u zavisnosti od vrednosti koeficijenata prolaza toplote elemenata termičkog omotača (stolarije, krova i spoljnih zidova). Istraživanje je sprovedeno numeričkim simulacijama dinamike energetskog ponašanja objekta BPS (Building Performance Simulation) korišćenjem programskog paketa EnergyPlus.

##plugins.themes.bootstrap3.article.details##

Kako citirati
CVETKOVIĆ, Dragan et al. Mogućnost primene plafonskog sistema grejanja za zagrevanje sportskih dvorana. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 48, n. 1, p. 237-246, dec. 2017. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/3305>. Datum pristupa: 10 dec. 2018
Sekcija
Članci

Reference

[1] Kilkis BI, Sager SS, Uludag M. A simpliIed model for radiant heating and cooling panels. Simulation Practice and Theory 1994; 2: 61–76.
[2] Lisa LM. Radiant heating provides energy-e-cientversatility.Professional builder and remodeler. 1992.
[3] Stetiu C. Energy and peak power potential of radiant cooling systems in US commercial buildings. Energy and Buildings 1999; 30: 127–38.
[4] Yost PA, Barbour CE, Watson R. An evaluation of thermal comfort and energy consumption for a surface mounted ceiling radiant panel heating system. ASHRAE Transactions 1995; 101 (1): 1221–35.
[5] Simmonds P. Practical applications of radiant heating and cooling to maintain comfort conditions. ASHRAE Transactions 1996; 102 (1): 659–65.
[6] Simmonds P. Control strategies for combined heating and cooling radiant systems. ASHRAE Transactions 1994; 100 (1): 1031–9.
[7] Olesen BW. Comparative experimental study of performance of radiant floor heating systems and a wall panel heating system under dynamic conditions. ASHRAE Transactions 1994; 100 (1): 1011–23.
[8] Gibbs DR. Control of multi-zone hydronic radiant floor heating systems. ASHRAE Transactions 1993; 99 (1): 1003–10.
[9] Leigh SB, MacCluer CR. A comparative study of proportional flux-modulation and various types of temperature-modulation approaches for radiant floor heating system control. ASHRAE Transactions 1994; 100 (1): 1040–52.
[10] MacCluer CR. The response radiant heating systems controlled by outdoor reset with feedback. ASHRAE Transactions 1991; 97 (2): 795–9.
[11] Kollmar A, Liese W. Die strahlungsheizung, 4th ed. Munchen: R. Oldenbourg; 1957.
[12] Leal RLV, Miller PL. An analysis of the transient temperature distribution in pavement heating installations. ASHRAE Transactions 1972; 78 (2): 71–8.
[13] Zhang Z, Pate MB.A numerical study of heat transfer in a hydronic radiant ceiling panel. In: Chen JLS, Vafai K, editors. Numerical methods in heat transfer, vol. 62. New York: ASME-HTD: 1986.
[14] Zhang Z, Pate MB.A semi-analytical formulation of heat transfer from structures with embedded tubes. In: Kuehn TH, editor. Heat transfer in buildings and structures, vol. 78. New York: ASME-HTD: 1987. p. 17–25.
[15] Kilkis BI, Eltez M, Sager S. A simpliIed model for the design of radiant in-slab heating panels. ASHRAE Transactions 1995; 99 (2): 210–6.
[16] Kilkis BI, Sapci M. Computer-aided design of radiant sub-floor heating systems. ASHRAE Transactions 1995; 99 (2): 1214–20.
[17] Kilkis BI, Coley M. Development of a complete software for hydronicfloor heating of buildings. ASHRAE Transactions 1995; 99 (2): 1201–13.
[18] Maloney DM, Pederson CO, Witte MJ. Development of a radiant heating system model for BLAST. ASHRAE Transactions 1988; 94 (1): 1795–808.
[19] Strand RK, Pederson CO. Implementation of a radiant heating and cooling model into an integrated building energy analysis program. ASHRAE Transactions 1997; 103 (1): 949–58.
[20] Strand RK, Pederson CO. Modeling radiant systems in an integrated heat balance based energy simulation program. ASHRAE Transactions 2002; 108 (2): 1–9.
[21] Miriel J, Fermanel F, Mare T. Modeling of water ceiling radiant panel heating and cooling system—interaction between air velocity and temperature fields. Computational technologies for fluid/thermal/structural/chemical systems with industrial applications. ASME; vol.1.1999. p. 285–91.
[22] Abdelaziz Laouadi. Development of a radiant heating and cooling model for building energy simulation software Building and Environment 39 (2004) 421–431
[23] Meteonorm, Global Meteorological Database for Engineers, Planners and Education: http://www.meteonorm.com, Retrieved May 2011
[24] M. Bogner, M. (2002). Technical regulations about heating, cooling and air conditioning (in Serbian). Belgrade: SMEITS.
[25] World Meteorogical Organization: http://worldweather.wmo.int/101/c00198.htm Retrieved May 5, 2011,
[26] http://www.ssllink.com/mre/cms/mestoZaUploadFajlove/ENERGETSKI_BILANS_PLAN_ZA_2008, Retrieved May 5, 2011.
[27] M. Virtanen, M. Ala-Juusela, Increased energy efficiency and improved comfort, Paper No. 1494, 9th REHVA World Congress- Clima 2007, 10–14 June, Helsinki, Finland.
[28] M. Ala-Juusela, Heating and Cooling with Focus on Increased Energy Efficiency and Improved Comfort, Guidebook to IEA ECBCS, Annex 37, Low Exergy Systems for Heating and Cooling of Buildings, VTT Technical Research Centre of Finland, 2003
[29] Interklima: http://www.interklima.rs/03_01cena_pg.html, Retrieved May 5, 2011
[30] Interklima: http://www.interklima.rs/01_14nacin_obracuna.html, Retrieved May 5, 2011