Poboljšanje energetskih performansi Osnovne škole Ćele kula u Nišu primenom sistema pasivnog solarnog dizajna

##plugins.themes.bootstrap3.article.main##

Dušan J. Ranđelović Miomir S. Vasov Marko G. Ignjatović Mirko M. Stojiljković Milena B. Blagojević

Apstrakt

Potreba za primarnom energijom se u poslednjih 30 godina gotovo utrostručila [1]. Zgradarstvo je energetski najzahtevniji sektor u Srbiji, pa u skladu sa time energetska efikasnost predstavlja najveći energetski resurs, posebno kroz potencijalnu mogućnost renoviranja postojećih objekata. Sektor školskih objekata je visoko na listi prioriteta vezanih za uštedu energije i predstavlja značajan resor koji je neophodno sanirati i poboljšati njegove performanse. Trenutno stanje energetske efikasnosti u Srbiji u oblasti javnih zgrada je zabrinjavanjuće, što daje puno mogućnosti za unapređenje i uštedu energije. Cilj ove studije predstavlja razvoj i određivanje optimalnog modela energetske sanacije u procesu sveobuhvatne revitalizacije postojeće osnovne škole Ćele kula u Nišu implementacijom pasivnih solarnih strategija, kao i njihova primena u lokalnim klimatskim uslovima. Pored pregleda literature, u ovom istraživanju je korišćen metod modelovanja zasnovan na kompjuterskoj simulaciji reprezentativnog postojećeg objekta osnovne škole. Primenom konkretnih intervencija pasivnog projektovanja, razvijeni su novi modeli energetske sanacije i smanjenje godišnjih potreba za energijom za grejanje i hlađenje. Rezultati potrošnje energije osnovne škole Ćeleu kula u Nišu pre i nakon implementacije strategija pasivnog solarnog dizajna su dobijeni na osnovu simulacija sprovedenih u softverskim paketima SketchUp i EnergyPlus.

##plugins.themes.bootstrap3.article.details##

Kako citirati
RANĐELOVIĆ, Dušan J. et al. Poboljšanje energetskih performansi Osnovne škole Ćele kula u Nišu primenom sistema pasivnog solarnog dizajna. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 49, n. 1, p. 71-83, dec. 2018. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/4085>. Datum pristupa: 19 mar. 2019
Sekcija
Članci

Reference

[1] Lam, J.C., et al., Residential Building Envelope Heat Gain And Cooling Energy Requirements, Energy, 30 (2005), 7, pp. 933-951
[2] Ignjatović Ćuković, N., Fasada - Adaptacije I Transformacije, Zadužbina Andrejević, 11120 Beograd, Beograd, 2010
[3] Adamson, B., et al., The world’s first Passive House, Darmstadt-Kranichstein, Germany, http://www.passipedia.org/examples/residential_buildings/single_-_family_houses/central_europe/the_world_s_first_passive_house_darmstadt-kranichstein_germany
[4] Ralegaonkar, R. V., Gupta, R., Review Of Intelligent Building Construction: A Passive Solar Architecture Approach, Renew. Sustain. Energy Rev., 14 (2010), 8, pp. 2238-2242
[5] Stevanović, S., Optimization Of Passive Solar Design Strategies: A Review, Renew. Sustain. Energy Rev., 25 (2013), pp. 177-196
[6] Dakwale, V. a., et al., Improving Environmental Performance Of Building Through Increased Energy Efficiency: A Review, Sustain. Cities Soc., 1 (2011), 4, pp. 211-218
[7] Gaitani, N., et al., On The Use Of Bioclimatic Architecture Principles In Order To Improve Thermal Comfort Conditions In Outdoor Spaces, Build. Environ., 42 (2007), 1, pp. 317-324
[8] Indraganti, M., Understanding The Climate Sensitive Architecture Of Marikal, A Village In Telangana Region In Andhra Pradesh, India, Build. Environ., 45 (2010), 12, pp. 2709-2722
[9] Omer, A.M., Renewable Building Energy Systems And Passive Human Comfort Solutions, Renew. Sustain. Energy Rev., 12 (2008), 6, pp. 1562-1587
[10] Gallo, C., Bioclimatic Architecture, Renew. energy, 5 (1994), 2, pp. 1021-1027
[11] Bekkouche, S.M. a., et al., Introduction To Control Of Solar Gain And Internal Temperatures By Thermal Insulation, Proper Orientation And Eaves, Energy Build., 43 (2011), 9, pp. 2414-2421
[12] Kalvelage, K., et al., Changing Climate: The Effects On Energy Demand And Human Comfort, Energy Build., 76 (2014), pp. 373-380
[13] Su, X., Zhang, X., Environmental Performance Optimization Of Window–wall Ratio For Different Window Type In Hot Summer And Cold Winter Zone In China Based On Life Cycle Assessment, Energy Build., 42 (2010), 2, pp. 198-202
[14] Ghoshal, S., Neogi, S., Advance Glazing System – Energy Efficiency Approach For Buildings A Review, Energy Procedia, 54 (2014), pp. 352-358
[15] Suárez, M.J., et al., Energy Evaluation Of An Horizontal Open Joint Ventilated Façade, Appl. Therm. Eng., 37 (2012), pp. 302-313
[16] Andjelkovic, A., et al., The Development Of Simple Calculation Model For Energy Performance Of Double Skin Façades, Therm. Sci., 16 (2012), suppl. 1, pp. 251-267
[17] Ignjatovic, M., et al., Influence Of Glazing Types And Ventilation Principles In Double Skin Façades On Delivered Heating And Cooling Energy During Heating Season In An Office Building, Therm. Sci., 16 (2012), suppl. 2, pp. 461-469
[18] Saadatian, O., et al., Trombe Walls: A Review Of Opportunities And Challenges In Research And Development, Renew. Sustain. Energy Rev., 16 (2012), 8, pp. 6340-6351
[19] Gan, G., A Parametric Study Of Trombe Walls For Passive Cooling Of Buildings, Energy Build., 27 (1998), 1, pp. 37-43
[20] Liu, Y., et al., A Numerical And Experimental Analysis Of The Air Vent Management And Heat Storage Characteristics Of A Trombe Wall, Sol. Energy, 91 (2013), pp. 1-10
[21] Bojić, M., et al., Optimizing Energy And Environmental Performance Of Passive Trombe Wall, Energy Build., 70 (2014), pp. 279-286
[22] Randjelovic, D., et al., IMPACT OF TROMBE WALL CONSTRUCTION ON THERMAL COMFORT AND BUILDING ENERGY CONSUMPTION, Facta Univ. Ser. Archit. Civ. Eng., 16 (2018), 2, pp. 279-292
[23] Quesada, G., et al., A Comprehensive Review Of Solar Facades. Opaque Solar Facades, Renew. Sustain. Energy Rev., 16 (2012), 5, pp. 2820-2832
[24] Jaber, S., Ajib, S., Optimum Design Of Trombe Wall System In Mediterranean Region, Sol. Energy, 85 (2011), 9, pp. 1891-1898
[25] Griggs, E.I., et al., Guide For Estimating Differences In Building Heating And Cooling Energy Due To Changes In Solar Reflectance Of A Low-Sloped Roof Summary, 1989
[26] McIntyre, L., Snodgrass C, E., The Green Roof Manual: A Professional Guide To Design, Installation, And Maintenance, Timber Press; First Edition edition, 2010
[27] Jaffal, I., et al., A Comprehensive Study Of The Impact Of Green Roofs On Building Energy Performance, Renew. Energy, 43 (2012), pp. 157-164
[28] Tsarounas, G., Green Walls Green Roofs: Designing Sustainable Architecture, Images Publishing Dist Ac, 2014
[29] Santamouris, M., Cooling The Cities - A Review Of Reflective And Green Roof Mitigation Technologies To Fight Heat Island And Improve Comfort In Urban Environments, Sol. Energy, 103 (2014), pp. 682-703
[30] Zhao, M., et al., Effects Of Plant And Substrate Selection On Thermal Performance Of Green Roofs During The Summer, Build. Environ., 78 (2014), pp. 199-211
[31] Tan Yok, P., Sia, A., A Selection Of Plants For Green Roofs In Singapore, Centre for Urban Greenery & Ecology, 2008
[32] Lin, B.S., et al., Impact Of Climatic Conditions On The Thermal Effectiveness Of An Extensive Green Roof, Build. Environ., 67 (2013), pp. 26-33
[33] Gagliano, A., et al., A Multi-Criteria Methodology For Comparing The Energy And Environmental Behavior Of Cool, Green And Traditional Roofs, Build. Environ., 90 (2015), pp. 71-81
[34] Moody, S.S., Sailor, D.J., Development And Application Of A Building Energy Performance Metric For Green Roof Systems, Energy Build., 60 (2013), pp. 262-269
[35] Refahi, A.H., Talkhabi, H., Investigating The Effective Factors On The Reduction Of Energy Consumption In Residential Buildings With Green Roofs, Renew. Energy, 80 (2015), pp. 595-603
[36] Zinzi, M., Agnoli, S., Cool And Green Roofs. An Energy And Comfort Comparison Between Passive Cooling And Mitigation Urban Heat Island Techniques For Residential Buildings In The Mediterranean Region, Energy Build., 55 (2012), pp. 66-76
[37] Sailor, D.J., A Green Roof Model For Building Energy Simulation Programs, Energy Build., 40 (2008), 8, pp. 1466-1478
[38] ***, ANSI/ASHRAE Standard 55-2013 – Thermal Environmental Conditions for Human Occupancy, https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy
[39] Ниш, АКЦИОНИ ПЛАН ОДРЖИВОГ ЕНЕРГЕТСКОГ РАЗВОЈА ГРАДА НИША SEAP NIŠ, 2014
[40] Todorović, M., et al., O Izolaciji, ETA, Milana Rakića 4 11000 Beograd www.eta-beograd.rs, 2012
[41] Giancola, E., et al., Evaluating Rehabilitation Of The Social Housing Envelope: Experimental Assessment Of Thermal Indoor Improvements During Actual Operating Conditions In Dry Hot Climate, A Case Study, Energy Build., 75 (2014), pp. 264-271
[42] Yılmaz, Z., Evaluation Of Energy Efficient Design Strategies For Different Climatic Zones: Comparison Of Thermal Performance Of Buildings In Temperate-Humid And Hot-Dry Climate, Energy Build., 39 (2007), 3, pp. 306-316
[43] Jaber, J.O., Prospects Of Energy Savings In Residential Space Heating, Energy Build., 34 (2002), pp. 311-319
[44] Sozer, H., Improving Energy Efficiency Through The Design Of The Building Envelope, Build. Environ., 45 (2010), 12, pp. 2581-2593
[45] Yu, Z., et al., A Systematic Procedure To Study The Influence Of Occupant Behavior On Building Energy Consumption, Energy Build., 43 (2011), 6, pp. 1409-1417
[46] Djongyang, N., et al., Thermal Comfort: A Review Paper, Renew. Sustain. Energy Rev., 14 (2010), 9, pp. 2626-2640
[47] ***, Prаvilnik о еnеrgеtskој еfikаsnоsti zgrаdа, http://www.mgsi.gov.rs/sites/default/files/Pravilnik o energetskoj efikasnosti zgrada.pdf
[48] Randjelovic, D., et al., DETERMINATION OF CLIMATE CHARACTERISTICS AS A DOMINANT PARAMETER IN BUILDING DESIGN - CASE STUDY THE CITY OF NIS, Proceedings, 2nd International Conference on Urban Planning - ICUP2018 Publisher, Niš, Serbia, 2018, pp. 163-170