Strujne karakteristike, modeliranje i simulacija jednofaznih i dvofaznih ejektora
##plugins.themes.bootstrap3.article.main##
Apstrakt
A review on implementation of the ejector thermo compression in refrigeration systems and heat pumps is presented in this paper. Thermal, flow and performance characteristics of the refrigeration single-phase and two-phase ejectors are analyzed. A calculating procedure for estimation of the main parameters and performance characteristics of the ejectors is presented. The two main sources of thermodynamic irreversibility: the process of momentum transfer in the mixing section and shock waves, or dispersed shock waves, or pseudo-shock waves in the fluid flow field are discussed. The shock waves are feature for gas and dry vapor fluid flow dispersed shock waves are feature for dominantly vapor two-phase fluid flow pseudo-shock waves are feature for dominantly liquid two-phase fluid flow. With appropriate choice of refrigerant and with optimal design of the ejector flow field elements the ejector systems can be successfully applied in various refrigeration / heat pump systems, and in combined (hybrid) and polygeneration thermal systems for utilization of low temperature heat, geothermal energy, solar energy and waste heat.
##plugins.themes.bootstrap3.article.details##
Reference
[2] Cerepnalkovski, I., Modern refrigerating machines, Elsevier Science Publishers, 307p,1991
[3] Loicianski, L. G., Fluid mechanics (in Russian) (Mehanika zidkosti i gaza), Nauka, Moscow, 1993
[4] White, F. M., Fluid mechanics, The McGraw-Hill Company, NY, 2008
[5] Chunnanond, K., Aphornratana, S., Ejectors: applications in refrigeration technology, Renew. Sustain. Energy Rev., 2004, 8 (2), 129–155
[6] Abdulateef, J. M., Sopian, K., Alghoul, M. A., Sulaiman, M. Y., Review on solar-driven ejector refrigeration technologies, Renew. Sustain. Energy Rev., 2009, 13 (6–7), 1338–1349
[7] Elbel, S., Hrnjak, P., Ejector Refrigeration: An overview of historical and present developments with an emphasis on air conditioning applications, Proc. Int. Refrig. and Air Condit. Conf., Purdue, USA, 2008
[8] Elbel, S., Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications, Int. J. Refrigeration, 2011, 34 (7), 1545–1561 10
[9] Bravo Gonzales, H. E., Rodriguez Dorantes, R., Gutierrez Hernandez, J., Brawn Best y, R., Aguila Roman, R., Pena Terres, H., State of art of simple and hybrid jet compression refrigeration systems and the working fluid influence, Int. J. Refrigeration, 2012, 35 (2), 386–396
[10] Chen, X., Omer, S., Worall, M., Riffat, S., Recent developments in ejector refrigeration technologies, Renew. Sustain. Energy Rev. 2013, 19, 629–651
[11] Sarkar, J., Ejector enhanced vapor compression refrigeration and heat pump systems - A review, Renew. Sustain. Energy Rev. 2012, 16, 6647–6659
[12] Šarevski, V. N., Šarevski, M. N., Influence of application of thermo compression on energy efficiency of industrial concentrators, Part I: theoretical analysis, Part II: experimental results, (in Serbian), International Congress, Processing 2009, Beograd, SR Yugoslavia, 2009
[13] Šarevski, V. N., Šarevski, M. N., Energy efficiency of the thermocompression refrigeration and heat pump systems, Int. J. Refrigeration, 2012d, 35 (4), 1067–1079
[14] Šarevski, V. N., Šarevski, M. N., Characteristics and energy efficiency of the industrial concentrators with thermocompression, Journal of Chemistry and Chemical Engineering, 2012, 6 (5), 435–444
[15] Šarevski, M. N., Šarevski, V. N., Energy and techno-economic effects with application of ejector thermocompression steam-condensate systems in paper industry, The 9th International symposium on paper industry, Zlatibor, Serbia, 124–129, 2003
[16] Šarevski, M. N., Šarevski, V. N., Optimization of the ejector thermo compression vacuum system and application in oil deodorization processes, The 41th Meeting - Proizvodnja i prerada uljarica, Milocher, Yugoslavia, 35–41, 1999
[17] Šarevski, M. N., Šarevski, V. N., Energy and exploitation characteristics of a two-phase ejector vacuum system installed in a paper machine, Journal of Chemical Industry, 58, 237–240, 2004
[18] He, S., Li, Y., Wang, R. Z., Progress of mathematical modeling on ejectors, Renew. Sustain. Energy Rev. 2009, 13 (8), 1760-1780
[19] Huang, B. J., Chang, J. M., Wang, C. P., Petrenko, V. A., A 1-D analysis of ejector performance, Int. J. Refrigeration, 1999, 22 (5), Pages 354–364
[20] Roman, R., Hernandez, J. I., Performance of ejector cooling systems using low ecological impact refrigerants, Int. J. Refrigeration, 2011, 34 (7), 1707–1716
[21] Garcia del Valle, J., Jabardo, J. M. S., Ruiz, F. C., Alonso, J. S. J., A one dimensional model for the determination of an ejector entrainment ratio, Int. J. Refrigeration, 2012, 35 (4), 772–784
[22] Berana, M. S., Nakagawa, M., Harada, A., Shock Waves in Supersonic Two-Phase Flow of CO2 in Converging-Diverging Nozzles, HVAC&R Research, 2009, 15 (6)
[23] Berana, M. S., Nakagawa, M., Simulation of shock waves in supersonic flow of CO2 through a converging diverging nozzle of transcritical ejector refrigeration system, 10th IIR Gustav Lorentzen Conference on Natural Refrigerants, Delft, The Netherlands, 2012, GL 288
[24] Wang, Y. T, Zhang, H., Calculation and analysis of sound velocity in vapor-liquid two-phase refrigerant flow, The 23th IIR International Congress of Refrigeration, Prague 2011. ID 189
[25] Karwacki, J., Dudar, A., Butrymowicz, D., Smerciew, K., Experimental investigation of motive nozzle in two-phase ejector, The 23th IIR International Congress of Refrigeration, Prague 2011, ID 696
[26] Banasiak, K., Hafner, A., Mathematical modeling of supersonic two-phase R744 flows through converging–diverging nozzles:, Appl. Therm. Eng. 2013, 51 (1-2), 635–643
[27] Bartosiewicz, Y., Aidoun, Z., Mercadier, Y., Numerical assessment of ejector operation for refrigeration applications based on CFD, Appl. Therm. Eng. 2006, 26 (5-6), 604–612
[28] Hemidi, A., Henry, F., Leclaire, S., Seynhaeve, J.M., Bartosiewicz, Y., CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation, Appl. Therm. Eng. 2009, 29 (8–9), 1523–1531
[29] Zhu, Y., Li, Y., Novel ejector model for performance evaluation on both dry and wet vapors ejectors, Int. J. Refrigeration, 2009, 32, 1, 21–31
[30] Scott, D., Aidoun, Z., Ouzzane, M., An experimental investigation of an ejector for validating numerical simulations, Int. J. Refrigeration, 2011, 34 (7), 1717–1723
[31] Ruangtrakoon, N., Thongtip, T., Aphornratana, S., Sriveerakul, T., CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrig. cycle, Int. J. Thermal Sciences, 2013, 63, 133–145
[32] Varga, S., Lebre, P.M.S., Oliveira, A.C., CFD study of a variable area ratio ejector using R600a and R152a refrigerants, Int. J. Refrigeration, 2013, 36 (1), 157–165
[33] Colarossi, M., Trask, N., Schmidt, D. P., Bergander, D. P., Multidimensional modeling of condensing two-phase ejector flow, Int. J. Refrigeration 2012, 35 (2), 290–299 11
[34] Yazdany, M., Alahyari, A. A., Radcliff, T. D., Numerical modeling of two-phase supersonic ejectors for work-recovery applications, Int. J. Heat Mass Transf. 2012, 55 (21-22), 5744-5753
[35] Zhu, Y, Jiang, P., Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance, Int. J. Refigeration, 2014, 40, 31- 42
[36] Lawrence, N., Elbel, S., Experimental and Analytical Investigation of Automotive Ejector Air-Condit. Cycles Using Low-Pressure Refrigerants, Int. Refrig. and Air Condit. Conf., Purdue, USA, 2012,
[37] Eames I. W., Aphornratana, S., Haider, H., A theoretical and experimental study of a small-scale steam jet refrigerator, Int. J. Refrigeration, 1995, 18 (6), 378–386
[38] Lui, F., Li, Y., Groll, E. A., Performance enhancement of CO2 air conditioner with a controllable ejector, Int. J. Refrigeration, 2012, 35 (6), 1604–1616