Raspodela rashladnog fluida i ulja u rashladnim sistemima na primeru automobilskog klima-uređaja
##plugins.themes.bootstrap3.article.main##
Apstrakt
U radu je prikazan polu-empirijski model za predviđanje količine rashladnog fluida i lubrikanta (sredstva za podmazivanje) i u mikronanalnom kondenzatoru i u isparivaču sa orebrenim pločama jednog klima-uređaja (sistema za klimatizaciju). Na modelu je razmenjivač toplote diskretizovan u konačne zapremine. Temperatura, pritisak i masa su izračunati primenom korelacija prenosa toplote, pada pritiska i udela praznine na svaku od ovih zapremina. Rashladni fluid i lubrikant su tretirani kao zeotropska mešavina sa klizanjem temperature. Budući da rashladni fluid isparava ili se kondenzuje, izvršena je procena termofizičkih svojstava u skladu sa promenom koncentracije lubrikanta. Pretpostavka je da se ulje zadržava u mešavini rashladnog fluida i ulja u koncentraciji koja se menjala tokom fazne promene u kondenzatoru i isparivaču. Eksperimentalni podaci sa R134a i uljem PAG pokazuju slaganje od 20% sa modelom rashladnog fluida i zadržavanja ulja u isparivaču. Međutim, u kondenzatoru, masa lubrikanta je stalno bila predviđana u manjoj vrednosti, dok je masa rashladnog fluida bila predviđena u istoj vrednosti kao u isparivaču (u okviru greške od 15%). Takođe predviđanje manje vrednosti lubrikanta postalo je značajnije pri višem koeficijentu cirkulacije ulja (Oil Circulation Ratio - OCR). Analiza je pokazala da se sredstvo za podmazivanje odvojilo iz toka u kolektoru kondenzatora i počelo da se akumulira u kanalima na dnu. Temperaturni profil na infracrvenoj slici podržava ovu hipotezu, jer je temperatura u kanalima na dnu bila znatno niža.
##plugins.themes.bootstrap3.article.details##
Reference
Refrigerant Condensation and evaporation in Two Phase Flow, Proc. International Refrigeration Conference,
Purdue University, IN.
[2] Burr, J. D., Newell, T. A. and Hrnjak P. S., 2005, Experimental Investigation of Viscous Two-Phase
Flow in Microchannels, ACRC TR-252, University of Illinois at Urbana-Champaign, Urbana, IL.
[3] Cavallini A., et al., 2006, Update on Condensation Heat Transfer and Pressure Drop inside Minichannels,
Heat Transfer Engineering, 27(4): 74-87.
[4] Cremaschi, L., 2004, Experimental and Theoretical Investigation of Oil retention in Vapor Compression
Systems, Ph.D. Thesis, CEEE, University of Maryland, College Park, MD.
[5] Cremaschi, L., Schwentker, R.A., Radermacher, R., 2006, Modeling of Oil Retention in the Suction
Line and Evaporator of Air Conditioning Systems, HVAC&R Research, vol.12 , no. 1: p. 35-56.
[6] Crompton, J.A., Newell, T.A., Chato, J.C., 2004, Experimental Measurement and Modeling of Oil
Hold-up, ACRC TR-226, Air Conditioning and Refrigeration Center, University of Illinois at Urbana-
Champaign, Urbana, IL.
[7] Jassim E. W., Newell T. A. and Chato J. C., 2006, Refrigerant Pressure Drop in Chevron and Bumpy
Style Flat Plate Heat Exchangers, Experimental Thermal and Fluid Science 30,213-222.
[8] Jin, S. and P. Hrnjak, 2013, Refrigerant and lubricant distribution in MAC system, SAE International
Journal of Passenger Cars - Mechanical Systems, 6 (2), doi:10.4271/2013-01-1496.
[9] Jin, S. and Hrnjak, P., 2014, "An Experimentally Validated Model for Predicting Refrigerant and Lubricant
Inventory in MAC Heat Exchangers," SAE Int. J. Passeng. Cars - Mech. Syst. 7(2),
doi:10.4271/2014-01-0694.
[10] Kondou, C. and P. Hrnjak, 2012, "Condensation From Superheated Vapor Flow of R744 And R410A
At Subcritical Pressures in a Horizontal Smooth Tube," International Journal of Heat and Mass Transfer,
55:11-12, 2779-2791.
[11] Mandrusiak G. D., and Carey V. P., 1988, Pressure Drop Characteristics of Two-phase Flow in a Vertical Channel with Offset Strip Fins, Experimental Thermal and Fluid Science 1,41-50.
[12] Niño V. G., Hrnjak P. S. and Newell T.A., 2002, Characterization of Two-Phase Flow in microchannels,
ACRC TR-202, University of Illinois at Urbana-Champaign, Urbana, IL.
[13] Padilla, Y. L. and Hrnjak, P. S., 2012, Experimentally Validated Models of Refrigerant Distribution in
Microchannel Heat Exchangers Used to Evaluate Charge, ACRC-TR 290, Air Conditioning and Refrigeration
Center, University of Illinois at Urbana-Champaign, Urbana, IL.
[14] Park Y. G and Jacobi A. M., 2009, Air-side Heat Transfer and Friction Correlations for Flat-tube Louver-
fin Heat Exchangers, Journal of Heat Transfer, Vol. 31.
[15] Peuker S. and Hrnjak P.S., 2010, Experimental and analytical investigation of refrigerant and lubricant,
ACRC TR-277, Air Conditioning and Refrigeration Center, University of Illinois at Urbana-
Champaign, Urbana, IL.
[16] Piggott, III, W.T., Newell, T.A., Chato, J.C., 2001, Investigation of an R134a Refrigerant/Iso 32
Polyol Ester Oil Mixture in Condensation, ACRC TR-192, Air Conditioning and Refrigeration Center,
University of Illinois at Urbana-Champaign, Urbana, IL.
[17] Premoli A., Francesco D., and Prina A., 1971, A Dimensionless Correlation for Determining the
Density of Two-phase Mixtures, La Termotecnica, 25: 17-26.
[18] Shen, B., Groll, E.A., 2003, Critical Literature Review of Lubricant Influence on Refrigerant Heat
Transfer and Pressure Drop, Air-Conditioning and Refrigeration Institute Report, ARTI-21CR/611-
20080.
[19] Thome J. R., 1995, Comprehensive Thermodynamic Approach to Modeling Refrigerant-Lubricating
Oil Mixtures, HVAC&R Research, 1:2, 110-125.
[20] Thome J. R., 2004, Engineering Data Book III, Chapter 17, Wolverine Tube, Inc. Swiss Federal Institute
of Technology Lausanne, Lausanne, Switzerland.
[21] Tuo H. and Hrnjak P. S., 2013, Periodic Reverse Flow and Boiling Fluctuations in a Microchannel
Evaporator of an R134a Mobile Air-Conditioning System, SAE International Journal of Materials and
Manufacturing, June 2013 vol. 6 no. 3, 540-548.
[22] Yan, Y.-Y. and Lin, T.-F., 1999, Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a
in a Plate Heat Exchanger, Transactions of the ASME, Vol. 121.
[23] Zivi S.M.,1964, Estimation of Steady-State Steam Void Fraction by Means of the Principle of Minimum Entropy Production , J. Heat Transfer, 86 Trans. Am. Soc. Mech. Engrs, Series C, 247–252.