Potrošnja energije u stambenoj zgradi – upoređenje konvencionalnih sistema i sistema baziranih na obnovljivim izvorima energije

##plugins.themes.bootstrap3.article.main##

A. Michopoulos G. Martinopoulos K. Papakostas N. Kyriakis

Apstrakt

Izvršen je proračun energetskih potreba jedne tipične porodične kuće u solunskom regionu za grejanje, hlađenje i zagrevanje sanitarne vode. Proračun je zasnovan na tipičnoj prosečnoj dnevnoj potrošnji tople vode i na metodi stepen-dana za grejanje i hlađenje. Rezultati su na kraju prevedeni u potrošnju toplotne energije, pretpostavljajući tipične uslove u Grčkoj (grejanje kotlovima na dizel gorivo i konvencionalni radijatori, hlađenje lokalnim toplotnim pumpama vazduh–vazduh razdvojenog split tipa i grejanje vode električnim grejačima). Pretpostavljeno je da se iste energetske potrebe pokrivaju vertikalnim zemnim razmenjivačem toplote sa zatvorenim cirkulacionim krugom, kombinovanim sa sistemom toplotne pumpe voda– voda, sa ventilator-konvektorima za grejanje i hlađenje i termosifonskim solarnim sistemom za grejanje sanitarne vode. Efikasnost sistema razmenjivač toplote/toplotna pumpa određena je na osnovu podataka iz postojećeg i neprekidno nadgledanog sličnog sistema instalisanog u širem području Soluna. Pokriće opterećenja od sunčevog sistema izračunato je po metodi f-grafikona. Potrošnja energije sistema na bazi obnovljivih izvora izračunata je i upoređena sa onom koju ima konvencionalni sistem. Rezultati dokazuju da se mogu ostvariti značajne uštede energije.  

##plugins.themes.bootstrap3.article.details##

Kako citirati
MICHOPOULOS, A. et al. Potrošnja energije u stambenoj zgradi – upoređenje konvencionalnih sistema i sistema baziranih na obnovljivim izvorima energije. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 38, n. 1, p. 217-225, july 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/5200>. Datum pristupa: 04 apr. 2020
Sekcija
Štednja energije u zgradama

Reference

[1] *** European Commission, Green Paper: Towards a European strategy for the security of energy supply, 1999.
[2] *** European Renewable Energy Council, Renewable Energy Target for Europe: 20% by 2020, 2004.
[3] *** EUROSTAT, Energy Statistics – supply, transformation, consumption, 2004.
[4] *** EUROSTAT, Consumption of electricity by industry, transport activities and households/services, 2004.
[5] Papadopoulos, A. M., Th. Theodosiou, K. D. Karatzas, Feasibility of energy saving renovation measures in urban buildings: The impact of energy prices and the acceptable pay back time criterion, Energy and Buildings 34 (5) (2002) 455–466.
[6] *** Greek Thermal Insulation Regulation, The Government’s Official Paper 362/79, 4 (1979) (in Greek).
[7] Iqbal, M., Optimum collector slope for residential heating in adverse climates, Solar Energy, 22 (1) (1979) 77–79.
[8] Duffie J. A., W. A. Beckman, Solar Engineering of Thermal Processes, Wiley Publication, 1991.
[9] *** Technical Directive of TCG 2425/86, Installations in buildings: Elements of HVAC load calculations for building spaces, Technical Chamber of Greece (TCG) (1987) (in Greek).
[10] *** European Standard EN 12831 Heating systems in buildings – Method for calculation of the design heat load, Hellenic Organization for Standardization S.A., 2003.
[11] *** ASHRAE Handbook of Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. Atlanta, USA, l985.
[12] Kepesidis, K., Software Evaluation for Vertical Ground Heat Exchanger Design, Dipl. Thesis, Department of Mechanical Engineer, Aristotle University of Thessaloniki (2006) (in Greek).
[13] Brinkworth, B. J., Solar DHW system performance correlation revisited, Solar Energy 71 (6) (2001) 377–387.
[14] Tsilingiris, P. T., Solar water-heating design – A new simplified dynamic approach, Solar Energy 57 (1) (1996), 19–28.
[15] Minnerly, B. V., S. A. Klein, W. A. Beckman, A rating procedure for solar domestic hot water systems based on ASHRAE-95 test results, Solar Energy Vol. 47 (6) (1991) 405-411.
[16] Tsilingiridis, G., G. Martinopoulos, N. Kyriakis, Life cycle environmental impact of a thermosiphonic domestic solar hot water system in comparison with electrical and gas water heating, Renewable Energy 29 (2004) 1277–1288.
[17] Pelekanos, A., K. Papachristopoulos, Meteorological data for implementation of solar energy applications in various cities in Greece, Proceedings of lst National Conference on Renewable Energy Sources, Volume A. Thessaloniki, Greece: Institute of Solar Technology (1982) (in Greek).
[18] *** European Standard EN 832, Thermal performance of buildings – Calculation of energy use for heating – Residential buildings, Hellenic Organization for Standardization S.A., 1999.
[19] Papakostas, K. and N. Kyriakis, Heating and cooling degree-hours for Athens and Thessaloniki, Greece, Renewable Energy 30 (2005), 1873–1880.
[20] Kreider, J. F., A. Rabl, Heating and Cooling of Buildings, McGraw Hill Inc, USA, 1994.
[21] *** Hitachi, Technical Catalogue for Heat Pumps (2002).
[22] Michopoulos, A., D. Bozis, P. Kikidis, K. Papakostas, N. A. Kyriakis, Threeyears operation experience of a ground source heat pump system in Northern Greece, Energy and Buildings Vol. 39 (3) (2007), 328–334.