Energetska analiza fotonaponskih ćelija integrisanih u krov

##plugins.themes.bootstrap3.article.main##

S. Pantić K. Athienitis

Apstrakt

Integrisanje fotonaponskih (PV) ćelija u krov stambene zgrade može zameniti krovne pločice, generišući istovremeno struju i toplotu. Teoretska i eksperimentalna studija fotonaponsko‑termičkog sistema integrisanog u omotač zgrade (BIPV/T) prezentovana je i ispituje uticaje različitih parametara projekta na povećanje konverzije sunčevog zračenja u korisnu energiju. Predstavljeni jednodimenzionalni dinamički BIPV/ T model eksperimentalno je potvrđen podacima o solarnoj kući. Rezultati ukazuju na značajan efekat vremenskih uslova, dužine BIPV/T sistema i brzine strujanja vazduha u PV kanalu na njegove energetske karakteristike. U slučaju nezastakljenog BIPV/T krova, predgrejani vazduh u PV kanalu mogao bi biti iskorišćen u klimatizacionom sistemu za zonsko grejanje zimi i grejanje sanitarne vode leti.

##plugins.themes.bootstrap3.article.details##

Kako citirati
PANTIĆ, S.; ATHIENITIS, K.. Energetska analiza fotonaponskih ćelija integrisanih u krov. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 38, n. 1, p. 239-251, july 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/5202>. Datum pristupa: 30 mar. 2020
Sekcija
Obnovljivi izvori energije

Reference

[1] Athienitis, A., Building Thermal Analysis, 2nd edition, MathCad electronic book, Mathsoft, 1998.
[2] Candanedo, J. A., S. Pantić, et al., Studies of control strtategies for the Concordia solar house, 2nd Canadian Solar Buildings Conference, Calgary, Canada, 2007.
[3] Charron, R., One and Two Dimensional Modeling of Ventilated Facades with Integrated Photovoltaics, MASc Thesis, Concordia University, Montreal, Canada, 2004.
[4] Gnielinski V., Forced convection in ducts, Hemisphere Publishing Corporation, In Heat Exchanger Design Handbook, 1983.
[5] Hutcheon, N., G. Handegord, Building Science for a Cold Climate, National Research Council of Canada, Canada, 1995.
[6] Incropera, F., D. DeWitt, Fundamentals of Heat and Mass transfer, 2nd edition, John Wiley & Sons, 1985.
[7] Liao, L., Numerical and Experimental Investigation of Building Integrated Photovoltaic Thermal System, MASc Thesis, Concordia University, Montreal, Canada, 2005.
[8] McClellan, T., C. Pedersen, Investigation of Outside Heat Balance Models for use in a Heat Balance Cooling Load Calculation Procedure, www.bso.uiuc. edu/publications/outsidHB.pdf / visited: November 15th, 2005.
[9] Pantić, S., Energy Analysis of Photovoltaic Thermal System Integrated with Roof and HVAC System, MASc Thesis, Concordia University, Montreal, Canada, 2007.
[10] Tang, H. et al., A simulation study on the energy performance of photovoltaic roofs, ASHRAE Transactions, Vol. 107 (2), 2001, pp. 129–135.
[11] Ubertini, S., U. Desideri, Performance estimation and experimental measurements of a photovoltaic roof, Renewable Energy 28, 2003, pp.1833–1850.
[12] Wang, Y. et al., Influence of a building’s integrated photovoltaics on heating and cooling loads, Applied Energy 83, 2006, pp. 989–1003.