Globalno hlađenje: uticaj gradskog albeda na globalnu temperaturu

##plugins.themes.bootstrap3.article.main##

Hashem Akbari Surabi Menon Arthur Rosenfeld

Apstrakt

U mnogim gradskim područjima, trotoari i krovovi predstavljaju preko 60% gradskih površina (krov 20–25%, a trotoari oko 40%). Albedo (refleksivnost) krovova i trotoara može biti povećan za oko 0,25 odnosno 0,l0, predstavljajući povećanje neto albeda u gradskim područjima od oko 0,1. Mnoge studije su prikazale uštedu energije hlađenja u zgradi od preko 20% na povećanju refleksivnosti krova sa postojećih 10–20% na oko 60%. Autori ocenjuju potencijalne uštede u SAD od preko 1 milijardu dolara godišnje u neto godišnjem energetskom bilansu. Povećanje albeda urbanih površina može sniziti letnje gradske temperature i poboljšati kvalitet vazduha u njemu. Povećanje gradskog albeda donosi dodatnu korist reflektovanjem više upadnog globalnog sunčevog zračenja i sprečavanjem efekta globalnog zagrevanja. Autori ocenjuju da povećanje albeda gradskih područja za 0,l dovodi do povećanja od 3 x 10‑4 albeda Zemlje. Koristeći jednostavan globalni model, promena temperature vazduha u donjih 1,8 km atmosfere dostiže, po proceni, 0,0l K. Modelari predviđaju zagrevanje od oko 3 K za sledećih 60 godina (0,05 K/god.). Promena gradskog albeda za 0,l dovešće do 0,01 K globalnog hlađenja i zakašnjenja od ~0,2 godine u globalnom zagrevanju. To zakašnjenje od 0,2 godine u globalnom zagrevanju jednako je smanjenju emisija ugljen‑dioksida od 10 Gt.

##plugins.themes.bootstrap3.article.details##

Kako citirati
AKBARI, Hashem; MENON, Surabi; ROSENFELD, Arthur. Globalno hlađenje: uticaj gradskog albeda na globalnu temperaturu. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 38, n. 1, p. 303-310, july 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/5210>. Datum pristupa: 05 apr. 2020
Sekcija
Uvodna predavanja

Reference

[1] Akbari, H.. S. Konopacki. 2005. Calculating energy‑saving potentials of heat‑island reduction strategies, Energy Policy, 33: 721756.
[2] Akbari, H., L. S. Rose, and H. Taha 2003. Analyzing the land cover of an urban environment using high‑resolution orthophotos, Landscape and Urban Planning, 63: 1–14.
[3] Akbari, H. and L. S. Rose, 2001a. Characterizing the fabric of the urban environment: A case study of metropolitan Chicago. Illinois, Lawrence Berkeley National Laboratory Report LBL49275, Berkeley, CA.
[4] Akbari, H. and L. S. Rose. 2001b. Characterizing the Fabric of the Urban Environment: A Case Study of Salt Lake City, Utah, Lawrence Berkeley National Laboratory Report No. LBNL47851, Berkeley, CA.
[5] Akbari, H., M. Pomerantz and H. Taha. 2001. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas, Solar Energy 70(3); 295310.
[6] Betts, R., 2001. Biophysical impacts of land us eon present‑day climate: near surface temperature and radiative forcing. Atmos. Sci. Lett. D00i:10.1006/asle- 2000.0023.
[7] Chase, T. N., R. A. Pielke Sr., T. G. F. Kittel, R. R. Nemani and S. W. Running, 2000. Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dynam. 16, 93–105.
[8] ***, CRMD. 2007. Cool Roof Material Database. http://eetd.lbl.gov/CoolRoofs/.
[9] Harte, J. 1988. Consider a Spherical Cow, pages 166, 174, University Science Books, Berkeley, CA.
[10] Hansen, J., M. Sato, A. Lacis, R. Ruedy, I. Tegen and E. Mathews, 1998. Climate forcings in the industrial era, Proc. Nat. Acad. Sci., 95, 12753–12758. 309
[11] Hansen, J., M. Sato, R. Ruedy. 1997. Radiative forcing and climate response, J Geophys Res, 102, D6: 6831–6864.
[12] Jacobson, M. Z., 2002. Control of fossil‑fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107, doi: 10.1029/2001JD001376.
[13] Jin, M. and J. M. Shepherd. 2005. Inclusion of urban landscape in a climate model, Buli. Anier. Meteorol. Soc: 681–689.
[14] Jin, M. and S. Liang, 2006: An improved land surface emissivity parameter for land surface models using global remote sensing observations, J. Clim., 19.2867–2881.
[15] Kaarsberg, T. and H. Akbari. 2006. Cool roofs cool the plant, Home Energv, Sep/Oct issue: 38–41.
[16] Levy, P. E., A. D. Friend, A. White and M. G. R. Cannell, 2004: The influence of land use change on global‑scale fluxes of carbon from terrestrial ecosystems, Clim. Change. 67: 185–209.
[17] Oyama, M. D. and C. A. Nobre, 2004: Climatic Consequences of a Largc‑Scale Desertification in Northeast Brazil: A GCM Simulation Study, J. Climate 17, 3203–3213.
[18] Rose, L. S. H. Akbari and H. Taha. 2003. Characterizing the Fabric of the Urban Environment: A Case Study of Greater Houston, Texas, Lawrence Berkeley National Laboratory Report LBNL51448. Berkeley, CA.
[19] *** Wikipedia. 2006. http://en.wikipedia.org/wiki/List_of_metropolitan_areas_ by_population#endnote_USnone.
[20] Pomerantz, M., H. Akbari, and J. T. Harvey, 2000a. The benefits of cooller pavements on durability and visibility, Lawrence Berkeley National Laboratory Report No. LBNL43443, Berkeley, CA.
[21] Pomerantz, M. B. Pon, H. Akbari and S. C. Chang. 2000b. The Effect of Pavement Temperatures on Air Temperatures in Large Cities, Lawrence Berkeley National Laboratory Report No. LBNL43442, Berkeley. CA.
[22] Pomerantz, M., H. Akbari, P. Berdahl, S. J. Konopacki and H. Taha. 1999. Reflective surfaces for cooller buildings and cities, Philosophical Magazine B 79(9); 1457–1476.
[23] Pomerantz, M., and H. Akbari. 1998 Cooler Paving Materials for Heat Island Mitigation, Proceedings of the 1998 ACEEE Summer Study on Energy Efficiency in Buildings 9; 135.
[24] Pomerantz, M., H. Akbari, A. Chen, H. Taha and A. H. Rosenfeld. 1997. Paving Materials for Heat Island Mitigation. Lawrence Berkeley National Laboratory Report No. LBL38074, Berkeley, CA.
[25] Rosenfeld, A. H. L., J. J. Romm, H. Akbari and M. Pomerantz. 1998. Cool Communities: Strategies for Heat Islands Mitigation and Smog Reduction, Energy and Buildings, 28(l); 51–62.
[26] Taha, H. 2002. Meteorological and Air Quality Impacts of Increased Urban Surface Albedo and Vegetative Cover in the Greater Toronto Area, Canada. Lawrence Berkeley National Laboratory Report No. LBNL49210, Berkeley, CA. 310
[27] Taha, H. 2001. Potential Impacts of Climate Change on Tropospheric Ozone in California: A Preliminary Episodic Modeling Assessment of the Los Angeles Basin and the Sacramento Valley, Lawrence Berkeley National Laboratorv Report No. LBNL46695, Berkeley, CA.
[28] Taha, H., S. C. Chang and H. Akbari. 2000. Meteorological and Air Quality Impacts of Heat Island Mitigation Measures in Three U.S. Cities, Lawrence Berkeley National Laboratorv Report No. LBL44222, Berkeley, CA.