Inje na neorebrenim i orebrenim cevima u uslovima rada toplotnih pumpi

##plugins.themes.bootstrap3.article.main##

Shinkyuk Yoon Keumnam Cho Gaku Hayase

Apstrakt

U ovoj studiji merene su debljina i masa inja na ravnim pločama i kružnim cevima u cilju predloga korelacionih jednačina za lokalne i srednje debljine inja, gustinu inja i masu inja. Ključni parametri su bili temperatura rashladne površine, apsolutna vlažnost vazduha, temperatura i brzina vazduha. Kao rashladni medijum korišćen je 50%- tni rastvor etilen-glikola u vodi. Takođe se merene debljina i masa inja na orebrenim cevima u cilju poređenja pretpostavljenih vrednosti na rebrima orebrenih cevi sa korelacionim jednačinama za ravne ploče i kružne cevi. Predložene su korelacione jednačine za lokalne i srednje debljine inja i masu inja u uslovima toplotnih pumpi. Vrednosti dobijene korišćenjem korelacionih jednačina u uslovima rada uređaja za zamrzavanje su veće do maksimalno 30%–50% od vrednosti dobijenih korišćenjem korelacionih jednačina u uslovima rada toplotnih pumpi. Empirijska korelacija u uslovima rada toplotnih pumpi u ovom ispitivanju može dati tačnije rezultate nego druge korelacije. Predložene korelacije za debljine inja se sa mernim podacima slažu unutar 5%, a predložene korelacije za masu inja se slažu sa merenim vrednostima unutar 10%.

##plugins.themes.bootstrap3.article.details##

Kako citirati
YOON, Shinkyuk; CHO, Keumnam; HAYASE, Gaku. Inje na neorebrenim i orebrenim cevima u uslovima rada toplotnih pumpi. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 40, n. 1, p. 145-158, nov. 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/5828>. Datum pristupa: 19 nov. 2019
Sekcija
Toplotne pumpe sa različitim izvorima toplote

Reference

[1] Trammel, G. J., D. C. Little and E. M. Lillgore, A Study of Frost Formed on a Flat Plate Held at Sub-Freezing Temperature, ASHRAE Journal 7(10), 42– 47 (2004).
[2] Brian, P. L. T., R. C. Reid and Y. T. Shah, Frost Deposition on Cold Surfaces, Industrial & Engineering Chemistry Fundamentals 9(3), 375–380 (1970).
[3] Sanders, C. T., The Influence of Frost Formation and Defrosting on the Performance of Air Coolers, Ph. D. Thesis, Delft Technical University, Netherlands (1974).
[4] O’Neal, D. L. and D. R. Tree, Measurement of Frost Growth and Density in a Parallel Plate Geometry, ASHRAE Transaction 90 (2843), 278–290 (1984).
[5] Mao, Y., R. W. Besant, K. S. Rezkallah, Measurement and correlations of frost properties with airflow over a flat plate, ASHRAE Trans 91, 267–281 (1992).
[6] Mao, Y., R. W. Besant, H. Chen, Frost characteristics and heat transfer on a flat plate under freezer operating conditions: Part 1, Experimentation and correlations, ASHRAE Transaction. Res. 105, 231–251 (1999).
[7] Yang D. K., K. S. Lee, Modeling of frosting behavior on a cold plate, International Journal of Refrigeration 28, 396–402 (2005).
[8] Lee, Y. B. and S. T. Ro, Frost formation on a vertical plate simultaneously developing flow, Experimental Thermal and Fluid Science, 26, 939–945 (2002).
[9] Ismail, K. A. R., C. Salinas and M. M. Goncalves, Frost growth around a cylinder in a wet air stream, Int. J. Refrigeration 20 (2), 106–119 (1997).
[10] Lee, Y. B. and S. T. Ro, An experimental study of frost formation on a horizontal cylinder under cross flow, Int. J. Refrigeration 24 (6), 468–474 (2001).
[11] Schneider, H. W., Equation of the growth rate of frost forming of cooled surface, Int. J. Heat Mass Transfer 21, 1019–1024 (1978).
[12] Sengupta, S., S. A. Sherif and K. V. Wong, Empirical heat transfer and frost thickness correlations during frost deposition on a cylinder in cross-flow in the transient regime, Int. J. Energy 22, 615–624 (1998).
[13] Raju, S. P. and S. A. Sherif, Frost formation and heat transfer on circular cylinders in cross-flow, Int. J. Refrigeration 16(6), 390–402 (1993).
[14] Kim, J. S., D. K. Yang, D. K. and K. S. Lee, Dimensionless correlations of frost properties on a cold cylinder surface, Int. J. Refrigeration 51, 3946–3952 (2008).
[15] Kwon, J. T., H. J. Lim, Y. C. Kwon, S. Koyama, D. H. Kim and C. Kondou, An experimental study on frosting of laminar air flow oan a cold surface with local cooling, International Journal of Refrigeration 29, 754–760 (2006).
[16] Shin, S. H., K. Cho, G. Hayase, Effect of air velocity on frost formation of split fin-and-tube heat exchanger under frosting condition, Proceedings of the winter annual conference of the SAREK, Korea, 252–257 (2007).
[17] Hayashi, Y., K. Aoki, H. Yuhara, Study of frost formation based on a theoretical model of the frost layer, Heat Transfer-Jpn Res 6 (3), 79–94 (1977).
[18] Moffat, R. J., Using uncertainty analysis in the planning of an experiment, Trans. of the ASME: J. of Fluid Engineering 107,173–182 (1985).
[19] Serker, D., H. Karatas, N. Egrican, Frost formation on fin-and-tube heat exchanger. Part I – Modeling of frost formation on fin-and-tube heat exchangers, International Journal of Refrigeration 27(4), 367–374 (2004).
[20] Mago, P. J. S. A. and Sherif, Heat and mass transfer on a cylinder surface in cross flow under supersaturated frosting conditions, Int. J. Refrigeration 26, 889–899 (2003).