Racionalni model upravljanja eksergijom za ekološki održive zgrade sa namenom smanjenja složenih emisija CO2

##plugins.themes.bootstrap3.article.main##

Siir Kilkis

Apstrakt

Ovaj rad razvija novi model, model za racionalno upravljanje eksergijom (Rational Exergy Management Model – REMM) sa ciljem da se odgovori na sve hitniju potrebu da se smanji količina CO2 koju zgrade emituju. REMM obezbeđuje novu analitičku perspektivu za upotrebu energije i emisije zgrada sa međusistemskim obuhvatom i povezuje početno neslaganje ponude i potražnje eksergije sa uopštenijim uticajem na energetski sistem. Konkretno, na osnovu unakrsnih parametara, formuliše se faktor složene emisije CO2, koji uključuje direktnu emisiju CO2 koja se može izbeći u skladu sa stepenom eksergetskog neslaganja. Trenutno, osnovni modeli zgrada imaju vrednosti ispod optimalnih zbog strukturalno preteranih nivoa eksergije. Ovaj rad nudi primer niza strategija razvijenih za potrebe promene paradigmi usmerenih ka eksergetski zelenim sistemima. Te strategije uključuju hibridne pristupe, na osnovu ponude i potražnje, kao i ciljeve za zgrade sa nultim nivoom ukupne potrošnje eksergije, što se integriše u višestranu strategiju ublažavanja emisija ugljenika za zgrade. Nova tehnika sa mapiranjem eksergije dalje unapređuje pristup na osnovu potražnje za pakete obnovljive energije. Osim toga, analitički alat zasnovan na eksergetski‑usmerenim scenarijima daje uštede u emisijama CO2 u odnosu na osnovne modele, kako bi se proširili horizonti postojećih klinova CO2. Rad zaključuje da je REMM u stanju da utvrdi ključne mogućnosti za održive zgrade za iskorišćenje ogromnog potencijala za smanjenje emisija CO2 i učvrsti svoju predvodničku poziciju u pogledu rešavanja problema CO2.

##plugins.themes.bootstrap3.article.details##

Kako citirati
KILKIS, Siir. Racionalni model upravljanja eksergijom za ekološki održive zgrade sa namenom smanjenja složenih emisija CO2. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 40, n. 1, p. 391-412, nov. 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/5864>. Datum pristupa: 19 nov. 2019
Sekcija
Adaptivne zgrade - ka nultim energetskim zgradama

Reference

[1] *** IEA, Energy Technologies Perspectives: Scenarios to 2050, Chapter 2 Scenarios, International Energy Agency, Paris, France (2008) 99.
[2] Monastersky, R., Climate crunch: A burden beyond bearing, Nature 458 (2009) 1091–1094.
[3] Hansen, J., M. Sato, P. Kharecha, D. Beerling, R. Berner et al, Target Atmospheric CO2: Where Should Humanity Aim?, The Open Atmospheric Science Journal 2 (2008) 217–231.
[4] Schmidt, D., Design of low exergy buildings – method and a pre‑design tool, International Journal of Low Energy and Sustainable Buildings 3 (1) (2004) 1–47.
[5] Johannesson, G., Development of various low‑ex system components and their integration, in: 6th Int. Conference on Indoor Air‑Quality, Ventilation and Energy Conservation in Buildings, Sendai (2007).
[6] Schmidt, D., Benchmarking of low “exergy” buildings, in: Proc. 8th Nordic Symposium on Building Physics in the Nordic Countries, Vol. 2, Copenhagen (2008) 621–628.
[7] Kilkis, B., Cost optimization of a hybrid HVAC system with composite radiant wall panels, Applied Thermal Engineering, 26 (1) (2006) 10–17.
[8] Sakulpipatsin, P., L. C. M. Itard, H. J. van der Kooi, E. C. Boelman, P. G. Luscuere, An exergy application for analysis of buildings and HVAC systems, Energy and Buildings (2008), doi: 10.1016/j.enbuild.2009.07.015.
[9] Balta, Y. Kalinci, A. Hepbasli, Evaluating a low exergy heating system from the power plant through the heat pump to the building envelope, Energy and Buildings 40 (2008) 1799–1804.
[10] Shukuya, M., Exergy concept and its application to the built environment, Building and Environment 44 (2009) 1545–1550.
[11] *** ECBCS Annex 37: Low Exergy Systems for Heating and Cooling, International Energy Agency, 2003, http://www.ecbcs.org/annexes/annex37.htm.
[12] *** ECBCS Annex49: Low Exergy Systems for High‑Performance Buildings and Communities, International Energy Agency, 2009, http://www.annex49. com/background.html.
[13] Schmidt, D., Low exergy systems for high‑performance buildings and communities, Energy and Buildings 41 (2009) 331–336.
[14] *** IEA, How the Energy Sector can Deliver on a Climate Agreement in Copenhagen: Special early excerpt of the World Energy Outlook 2009 for the Bangkok UNFCCC meeting, Paris, France (2009).
[15] Kilkis, S., A Rational Exergy Management Model to Reduce CO2 Emissions by Global Exergy Matches, Honors Thesis, Georgetown University, Washington. D. C., 2007.
[16] Kilkis, S., A Rational Exergy Management Model for Curbing Building CO2 Emissions, in: ASHRAE Transactions, Vol. 113. part 2 (2007) 113–123.
[17] ***TFI‑IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Intergovernmental Panel on Climate Change, Hayama, Japan (2006) 2.16.
[18] *** Directive 2007/74/EC, Establishing harmonized efficiency reference values for separate production of electricity and heat in application of Directive 2004/8/EC, Brussels, 2007.
[19] *** Climate Change Technology Program, Technology Options for the Near and Long Term (2005) 1.3:4–5, available at: http://www.climatetechnology.gov/library/ 2005/tech‑options/index.htm.
[20] *** IEA Energy Statistics, International Energy Agency, 2006, http://www.iea. org/Textbase/stats/index.asp.
[21] Thyholt, M., A. Hestnes, Heat supply to low‑energy buildings in district heating areas: Analyses of CO2 emissions and electricity supply security, Energy and Buildings 40 (2008) 131–139.
[22] *** Energie‑Cities, Imagine Exhibition Virtual Tour – Växjö, http://www.imagineyourenergyfuture. eu/exhibition/.
[23] Anzioso, F., High Efficiency Polygeneration Applications (HEGEL), in: Proc. 1st European Conference on Polygeneration, Tarragona (2007) 297–312.
[24] *** Betz’ law and proof of Betz’ law, in: Wind energy reference manual, Danish Wind Turbine Manufacturers Association, (2006) 71–2, 262–3.
[25] Campbell, P., K. Adamson, Estimation of Energy Yield from Wind Turbine Generators, in: Proc. PowerCON (2003).
[26] Kilkis, S., B. Kilkis, Optimization of Heat‑Pump Applications for Net‑Zero Exergy Buildings, in: Proc. 9th IEA Heat Pump Conference, Zurich (2008).
[27] *** ASHRAE et al., Advanced Energy Design Guide for Small Retail Buildings: Achieving 30% energy savings over ANSI/ASHRAE/IESNA Standard 90.1‑1999, Atlanta, USA, 2008.
[28] Crawley, D., S. Pless, P. Torcellini, Getting to Net Zero, ASHRAE Journal, Sept. (2009) 18–25.
[29] *** The Zero Energy Buildings Database, Building Technologies Program, Department of Energy, USA, 2008 http://zeb.buildinggreen.com.
[30] *** European Parliament, All new buildings to be zero energy from 2019, Press Release 2009.
[31] Kilkis, S., A new‑metric for net‑zero carbon buildings, in: Proc. ASME Energy Sustainability Conference, Long Beach (2007).
[32] Church, K., Community Case Study II: Okotoks Solar Demonstration Project, Canada, ECBCS Annex 49 Newsletter 4 (2008) 6–7.
[33] *** EERE, Building Technologies Program, Department of Energy, USA, 2004, http://www.eere.energy.gov/buildings/tech.
[34] Pacala, S., R. Socolow, Stabilization Wedges: Solving the Climate Problem for the next 50 Years with Current Technologies, Science (2004) 968–972.
[35] *** BEDB, 2008 Building Energy Data Book, Building Technologies Program, Department of Energy, USA (2009) 2–1.
[36] Holness, G. Sustaining our Future by Rebuilding our Past, ASHRAE Journal Aug. (2009) 16–21.
[37] *** Japan Sustainable Building Consortium (JSBC), Comprehensive Assessment System for Built Environment Efficiency (CASBEE), 2009, http://www. ibec.or.jp/CASBEE/english/index.htm.
[38] *** US Green Building Council, Leadership in Energy and Environmental Design (LEED) v3, 2009.
[39] *** Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand in the internal energy market, European Parliament, Brussels, 2004.
[40] Kilkis, B., S. Kilkis, Upgrading EU Directive with Rational Exergy Management, in: ASHRAE Transactions, Vol. 113, part 2 (2007) 181–191.
[41] Moran, D., M. Wackernagel, J. Kitzes, S. Goldfingera, A. Boutaud, Measuring sustainable development – Nation by nation, Ecological Economics 64 (2008) 470–474.