Energetski efikasne zgrade i kombinovani termički sistemi za proizvodnju električne energije, grejanje, hlađenje i klimatizaciju

##plugins.themes.bootstrap3.article.main##

Aleksandar Gjerasimovski Maja Sharevska Natasha Gjerasimovska Monika Sharevska Vasko Šarevski

Apstrakt

Analizirani su toplotne karakteristike energetski efikasnih zgrada i procenjene su energetske potrebe. Izložen je koncept kombinovanog kompresorsko – ejektorskog termičkog sistema za istovremenu proizvodnju električne energije, grejanja, hlađenja i klimatizacije. Procenjuju se radne karakteristike primarnog motora - električnog generatora na prirodni gas i predložena je optimalna kombinovana kompresorsko – ejektorska rashladna mašina / toplotna pumpa da bi se zadovoljile energetske potrebe za strujom, grejanjem, hlađenjem i klimatizacijom. Izvršene su osnovne termičke proračune, materijalne i energetske bilanse kompletnog termičkog sistema i date su optimizacione procedure za komponente termičkog sistema. Izvršeno je poređenje predloženih termičkih sistema i poređenje potrošnje energije (prirodnog gasa) sa konvencionalnim termičkim sistemima i potrošnje energije za struju, za  grejanje (prirodni gas - kotao), za hlađenje (električna  energija - kompresorski rashladni sistem) i za klimatizaciju.

##plugins.themes.bootstrap3.article.details##

Kako citirati
GJERASIMOVSKI, Aleksandar et al. Energetski efikasne zgrade i kombinovani termički sistemi za proizvodnju električne energije, grejanje, hlađenje i klimatizaciju. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 51, n. 1, p. 59-65, dec. 2020. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6172>. Datum pristupa: 07 may 2021 doi: https://doi.org/10.24094/kghk.020.51.1.59.
Sekcija
Članci

Reference

[1] Šarevski, V., Greenje i klimatizacija, Mašinski Fakultet – Skopje, Skopje 2010
[2] Liu, M., Shi, Y., Fang, F., Combined cooling, heating and power systems: A survey, Renew. Sustain. Energy Rev. 2014, 32, 1– 22
[3] Javan, S., Mohamadi, V., Ahmadi P., Hanafizadeh, P., Fluid selection optimization of a combined cooling, heat-ing and power (CCHP) system for residential applications, Appl. Therm. Eng. 2016, 96, 130 – 142
[4] Ferrari, M. L.,Traverso, A., Massardo, A. F., Smart polygeneration grids: experimental performance curves of different prime movers, Applied Energy, 2016, 162, 622–630
[5] Kim, K. H., Perez-Blanco, H., Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration, Appl. Therm. Eng.2015, 91, 964 – 974
[6] Gjerasimovski A., Sharevska M., Gjerasimovska N., Sharevska M., Šarevski, M., Characteristics of thermal systems for simultaneous production of electricity, heat and refrigeration, Proceedings Procesing 2020, SMEITS, Belgrade, Serbia, 2020
[7] Jradi, M., Riffat, M., Tri-generation systems: Energy policies, prime movers, cooling technologies, configuration sand operation strategies, Renew. Sustain. Energy Rev. 2014, 32, 396–415
[8] Brückner, S., Liu, S., Miro, L., Radspieler, M., Cabeza, L. F., Lavemann, E., Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies, Appl. Energy 2015, 151, 157–167
[9] Gjerasimovski, A., Sharevska, M., Gjerasimovska, N., Sharevska, M., Šarevski, V., A new concept for sustaina-ble energetic development in process industry, Proceedings Procesing 2020, SMEITS, Belgrade, Serbia, 2020
[10] Šarevski, M. N., Šarevski, V. N., Water (718) turbo compressor and ejector refrigeration / heat pump technology, ISBN: 978-0-08-100733-4, Elsevier, 2016
[11] Arpagaus, C., et al., High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials, Energy, Vol. 152, 1, June 2018, p. 985 – 1010
[12] Xing-Qi Cao., et al., Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery, Applied Thermal Engineering, Vol 71, 1, 2014, pp. 291-300
[13] Mateu-Royo, C., et al., Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery, International Journal of Refrigeration, Vol. 90, 2018, pp. 229-237
[14] Müller, N., Design of Compressor Impellers for Water as a Refrigerant, ASHRAE Trans. 107, 214–222, 2001
[15] Brasz, J. J., Past, present and feature of turbo machinery in the HVACR industry, Int. Refrig. and Air Condit. Conf., Purdue, USA, 2012, ID 3606
[16] Schiffmann, J., Favrat, D., Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications, Energy, 2010, 35(1), 436–45
[17] Javed, A., Arpagaus, C., Bertsch, S., Schiffmann, J., Small-Scale Turbocompressors for Wide-Range Operation with Large Tip-Clearances for a Two-Stage Heat Pump Concept, Int. J. Refrigeration, 2016