Potencijal uštede toplotne energije u vrtiću sa pripremnim predškolskim grupama – studija slučaja Kragujevac

##plugins.themes.bootstrap3.article.main##

Novak Nikolić Davor Jovanović Nebojša Lukić

Apstrakt

U ovom radu izvršena je procena potencijalne uštede energije za grejanje u slučaju jednog vrtića u Kragujevcu pomoću simulacionog softvera „EnergyPlus“. Cilj rada je odrediti količinu energije za grejanje koja se može uštedeti ako se vrtić razdvoji na dva dela i ukoliko se primene različiti rasporedi uključenja sistema grejanja određeni prema prisustvu dece u odgovarajućim grejanim zonama tokom različitih vremenskih intervala. Ovaj rad ukazuje na problem neracionalne upotrebe energije tokom boravka malog broja ljudi u zgradi sa velikim brojem grejanih prostorija. Osnovni razlog za razdvajanje vrtića u dva odeljka su njegove celodnevne i poludnevne grupe dece. Celodnevne grupe prisutne su u oba odeljka analiziranog vrtića od 8 do 15h, dok su poludnevne grupe (pripremne predškolske grupe) prisutne samo u jednom odeljku vrtića ukupno četiri sata (16h-20h). Prema rezultatima simulacija, 13,2% (7277.5 kWh) toplotne energije bi bilo moguće uštedeti ukoliko bi se temperatura uključenja sistema grejanja tokom vikenda (kada nema prisustva dece) smanjila za sve grejane zone sa 20°C na 12°C. S druge strane, ukoliko bi se uz smanjenje pomenute temperature aktivacije sistema grejanja tokom vikenda, zagrevao samo deo objekta u kome su prisutna deca (pripremne predškolske grupe) tokom radnih dana, uštede energije za grejanje vrtića bi iznosile 24,84% (13700 kWh).

##plugins.themes.bootstrap3.article.details##

Kako citirati
NIKOLIĆ, Novak; JOVANOVIĆ, Davor; LUKIĆ, Nebojša. Potencijal uštede toplotne energije u vrtiću sa pripremnim predškolskim grupama – studija slučaja Kragujevac. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 51, n. 1, p. 121-127, dec. 2020. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6179>. Datum pristupa: 22 sep. 2021
Sekcija
Članci

Reference

[1] D’Agostino, D., B. Cuniberti, P. Bertoldi, Energy consumption and efficiency technology measures in European non-residential buildings, Energy and Buildings, 157 (2017), pp. 72–86.
[2] European Commission, Energy performance of buildings directive, https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive (Accessed 15th September 2020).
[3] Pombo, O., B. Rivela, J. Neila, The challenge of sustainable building renovation: assessment of current criteria and future outlook, Journal of Cleaner Production, 123 (2016), pp. 88–100.
[4] Statistical office of the Republic Serbia, Annual Energy Statistics, https://data.stat.gov.rs/Home/Result/040101 (Accessed 15th September 2020).
[5] Vukašinović, V., N. Jurišević, M. Josijević, D. Živković, D. Gordić, Improving the efficiency of using heat in preschool buildings – study of “Ciciban” kindergarten, Tehnika, 67 (2018), 3, pp. 381-388.
[6] Jovanović, D., D. Gordić, J. Nikolić, N. Jurišević, M. Josijević, The Thermal Energy Audit and Increasing of Efficiency of Thermal Energy Use in the Kindergarten “Zeka” in the City of Kragujevac, Serbia, XXXV Međunarodno savetovanje – Energija – Ekonomija - Ekologija Savez energetičara, Zlatibor, R. Serbia, 2020.
[7] Jovanović, D., D. Gordić, V. Šušteršič, M. Josijević, N. Jurišević, Cost-effectiveness analysis for the installation of photovoltaic panels in a public facility in the territory of Kragujevac – A case study of “Zeka” kindergarten, Traktori i pogonske mašine, 24 (2019), 3/4, pp. 87-93.
[8] Nikolić, M., A. Milojković, D. Stanković, V. Bogdanović, I. Mijailović, Implementation models for energy re-covery measures of existing kindergarten facilities in Serbia, Tehnički vjesnik, 23 (2016), 2, pp. 437-446.
[9] Stanković, D. et. al., Revitalization of Preschool Buildings: A Methodological Approach, Procedia Engineering, 117 (2015), pp. 723-736.
[10] Chen, J., C. Ahn, Assessing occupants’ energy load variation through existing wireless network infrastructure in commercial and educational buildings, Energy and Buildings, 82 (2014), pp. 540–549.
[11] Andersen, R., B. Olesen, J. Toftum, Simulation of the Effects of Occupant Behaviour on Indoor Climate and Energy Consumption, Clima2007, Helsinki, Finland, 2007.
[12] Toftum, J., Central automatic control or distributed occupant control for better indoor environment quality in the future, Building and Environment, 45 (2010), 1, pp. 23-28.
[13] Crawley, D. et. al., EnergyPlus: creating a new-generation building energy simulation program, Energy and Build-ings, 33 (2001), 4, pp. 319–331.
[14] Republic of Serbia, Ministry of Construction, Transport and Infrastructure, Official Gazette 61/2011, Regulations on Energy Efficiency of Building Construction, 2011, https://www.mgsi.gov.rs/sites/default/files/PRAVILNIK%20O%20ENERGETSKOJ%20EFIKASNOSTI%20ZGRADA.pdf. (Accessed 25th August 2020)