Analiza prenosa toplote FPM integrisanog sistema podnog grejanja

##plugins.themes.bootstrap3.article.main##

Marius Brănoaea Andrei Burlacu Marina Verdeș Vasilică Ciocan Robert Ștefan Vizitiu

Apstrakt

Fazno promenljivi materijali imaju velike prednosti u odnosu na klasične građevinske materijale zato što mogu da skladište i otpuštaju velike količine toplotne energije tokom procesa fazne promene. Pomoću CFD simulacija, ovaj rad ukazuje da smanjenje dnevne potrošnje energije za potrebe grejanja zgrada može biti postignuto integracijom fazno promenljivih materijala u sistem podnog grejanja – putem smanjenja broja dnevnih ciklusa grejanja kroz produženje vremena faze otpuštanja.

##plugins.themes.bootstrap3.article.details##

Kako citirati
BRĂNOAEA, Marius et al. Analiza prenosa toplote FPM integrisanog sistema podnog grejanja. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 51, n. 1, p. 145-152, dec. 2020. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6182>. Datum pristupa: 27 july 2021
Sekcija
Članci

Reference

[1] X. Cao, X. Dai and J. Liu, "Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade," Energy and Buildings, vol. 128, p. 198–213, 2016.
[2] F. Guarino, A. Athienitis, M. Cellura and D. Bastien, "PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates," Applied Energy, vol. 185, pp. 95-106, 2017.
[3] S. S. Magendran, F. S. A. Khan, N. M. Mubarak, M. Khalid, R. Walvekar, E. C. Abdullah, S. Nizamuddin and R. R. Karri, "Synthesis of organic phase change materials by using carbon nanotubes as filler material," Nano-Structures & Nano-Objects, vol. 19, p. 100361, 2019.
[4] E. Akalpler and M. E. Shingil, "Statistical reasoning the link between energy demand, CO2 emissions and growth: Evidence from China," Procedia Computer Science, vol. 120, p. 182–188, 2017.
[5] P. Fotis, S. Karkalakos and D. Asteriou, "The relationship between energy demand and real GDP growth rate: The role of price asymmetries and spatial externalities within 34 countries across the globe," Energy Economics, vol. 66, pp. 69-84, 2017.
[6] F. P. Cambeiro, J. Armesto, G. Bastos, J. I. P. López and F. P. Barbeito, "Economic appraisal of energy efficiency renovations in tertiary buildings," Sustainable Cities and Society, vol. 47, p. 101503, 2019.
[7] K. Belz, F. Kuznik, K. F. Werner, T. Schmidt and W. Ruck, "Thermal energy storage systems for heating and hot water in residential buildings," in Advances in Thermal Energy Storage Systems, Woodhead Publishing Series in Energy, 2015, pp. 441-465.
[8] S. S. Magendran, F. S. A. Khan, N. M. Mubarak, M. Vaka, R. Walvekar, M. Khalid, E. C. Abdullah, S. Nizamuddin and R. R. Karri, "Synthesis of organic phase change materials (PCM) for energy storage applications: A review," Nano-Structures & Nano-Objects, vol. 20, p. 100399, 2019.
[9] Y. Lin, Y. Jia, G. Alva and G. Fang, "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, vol. 82, no. 3, pp. 2730-2742, 2018.
[10] S. R. L. Cunha and J. L. B. Aguiar, "Phase change materials and energy efficiency of buildings: A review of knowledge," Journal of Energy Storage, vol. 27, p. 101083, 2020.
[11] X. Kong, L. Wang, H. Li, G. Yuan and C. Yao, "Experimental study on a novel hybrid system of active composite PCM wall and solar thermal system for clean heating supply in winter," Solar Energy, vol. 195, p. 259–270, 2020.
[12] H. Wang, W. Lu, Z. Wu and G. Zhang, "Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai," Renewable Energy, vol. 145, pp. 52-64, 2020.
[13] P. K. S. Rathore and S. K. Shukla, "Potential of macroencapsulated pcm for thermal energy storage in buildings: A comprehensive review," Construction and Building Materials, vol. 225, p. 723–744, 2019.
[14] T. Pirasaci, "Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season," Energy, no. 207, p. 118176, 2020.
[15] A. S. Bejan and T. Catalina, "The implementation of Phase Changing Materials in energy-efficient buildings. Case Study: EFdeN Project," Energy Procedia, no. 85, pp. 52-59, 2016.
[16] S. Li, K. Zou, G. Sun and X. Zhang, "Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM," Sustainable Cities and Society, vol. 40, pp. 266-273, 2018.
[17] Y. Hu and P. K. Heiselberg, "A new ventilated window with PCM heat exchanger—Performance analysis and design optimization," Energy and Buildings, vol. 169, pp. 185-194, 2018.
[18] H. Weinläder, F. Klinker and M. Yasin, "PCM cooling ceilings in the Energy Efficiency Center – Regeneration behaviour of two different system designs," Energy and Buildings, vol. 156, pp. 70-77, 2017.
[19] M. Yasin, E. Scheidemantel, F. Klinker, H. Weinläder and S. Weismann, "Generation of a simulation model for chilled PCM ceilings in TRNSYS and validation with real scale building data," Journal of Building Engineering, vol. 22, pp. 372-382, 2019.
[20] B. Y. Yun, S. Yang, H. M. Cho, S. J. Chang and S. Kim, "Design and analysis of phase change material based floor heating system for thermal energy storage," Environmental Research, vol. 173, pp. 480-488, 2019.
[21] S. Lu, B. Xu and X. Tang, "Experimental study on double pipe PCM floor heating system under different operation strategies," Renewable Energy, vol. 145, pp. 1280-1291, 2020.
[22] K. Faraj, J. Faraj, F. Hachem, H. Bazzi, M. Khaled and C. Castelain, "Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates," Applied Thermal Engineering, vol. 158, p. 113778, 2019.
[23] J. Guo, Y. Jiang, Y. Wang and B. Zou, "Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study," Energy Conversion and Management, vol. 205, p. 112288, 2020.
[24] A. E. Mays, R. Ammar, H. Mahamad, M. A. Akroush, F. Hachem, M. Khaled and M. Ramadan, "Using phase change material in under floor heating," Energy Procedia, vol. 119, pp. 806-811, 2017.
[25] P. Devaux and M. M. Farid, "Benefits of PCM underfloor heating with PCM wallboards for space heating in winter," Applied Energy, no. 191, p. 593–602, 2017.
[26] D. A. Reay, R. J. McGlen and P. A. Kew, Heat Pipes, 6th Edition, Theory, Design and Applications, Elsevier Ltd., 2014.
[27] A. Burlacu, C. D. Lăzărescu, V. Ciocan, M. Verdeș, M. C. Balan and A. A. Şerbănoiu, "CFD Heat Transfer Analysis for Heat Pipes Integration into Buildings with Glazed Façades," Procedia Engineering, vol. 181, pp. 658-665, 2017.
[28] A. Burlacu, G. Sosoi, R. Ș. Vizitiu, M. Bărbuță, C. D. Lăzărescu, V. Ciocan and A. A. Șerbănoiu, "Energy efficient heat pipe heat exchanger for waste heat recovery in buildings," Procedia Manufacturing, no. 22, p. 714–721, 2018.
[29] [Online]. Available: https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt.