Različite metode ventilacije i njihov uticaj na potrošnju energije za grejanje jedne predškolske ustanove

##plugins.themes.bootstrap3.article.main##

Novak Nikolić Milisav Prodanović Davor Jovanović Nebojša Lukić

Apstrakt

Cilj ovog istraživanja je ispitivanje uticaja dve različite metode ventilacije (Metode 1 i Metode 3), definisane prema standardu EN 16798, na predviđenu potrošnju energije za grejanje jednog vrtića u gradu Kragujevcu (Srbija). Zahtevi za ventilacijom Metode 1 se zasnivaju na podacima o prisustvu ljudi. Iz tog razloga, analiziran je i efekat različitih rasporeda prisustva ljudi, rasporeda stvarnog, prosečno godišnjeg i maksimalnog prisustva ljudi, na predviđanje energetskog ponašanja odabrane zgrade. Metodu 3 karakteriše stalna vrednost protoka svežeg vazduha, određena prema zapremini prostorije koja se ventiliše (0.5 ach). Dobijeni rezultati simulacija ukazuju da kod Metode 1 potrošnja toplotne energije raste sa povećanjem protoka svežeg vazduha ili broja ljudi u zgradi. Suprotno tome, pri stalnoj količini svežeg vazduha (Metoda 3) potrošnja toplotne energije se smanjuje sa povećanjem broja ljudi. Pokazano je da upotreba rasporeda maksimalnog prisustva dece daje najveću grešku u predviđanju potrošnje toplotne energije (do 11.38%), nezavisno od metode ventilacije. Za raspored prosečnog godišnjeg prisustva ljudi greška se kreće do 3.90%. Na osnovu prikazanih rezultata, u cilju približavanja predviđenog energetskog ponašanja zgrade njenom stvarnom ponašanju preporučuje se upotreba rasporeda stvarnog prisustva ljudi. Raspored maksimalnog prisustva ljudi, u svakom slučaju treba izbegavati.

##plugins.themes.bootstrap3.article.details##

Kako citirati
NIKOLIĆ, Novak et al. Različite metode ventilacije i njihov uticaj na potrošnju energije za grejanje jedne predškolske ustanove. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 52, n. 1, p. 87-96, dec. 2021. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6703>. Datum pristupa: 29 nov. 2022
Sekcija
Članci

Reference

[1] Acosta-Acosta, D.F., El-Rayes, K., Optimal design of classroom spaces in naturally-ventilated buildings to maximize occupant satisfaction with human bioeffluents/body odor levels, Building and Environment, 169 (2020), 106543, https://doi.org/10.1016/j.buildenv.2019.106543.
[2] Gao, J., Wargocki, P., Wang, Y., Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season, Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, Lecture Notes in Electrical Engi-neering, Vol. 261, pp. 203-214, Springer, Berlin, Heidelberg, 2014.
[3] Bakó-Biró, Zs., Clements-Croome, D.J., Kochhar, N., Awbi, H.B., Williams, M.J., Ventila-tion rates in schools and pupils’ performance, Building and Environment, 48 (2012), pp. 215-223.
[4] Katarzyna Gładyszewska-Fiedoruk, Analysis of stack ventilation system effectiveness in an average kindergarten in north-eastern Poland, Energy and Buildings, 43 (2011), pp. 2488-2493.
[5] Branco, P.T.B.S., Alvim-Ferraz, M.C.M., Martins, F.G., Sousa, S.I.V., Indoor air quality in urban nurseries at Porto city: Particulate matter assessment, Atmospheric Environment, 84 (2014), pp. 133-143.
[6] Ahmed, K., Kuusk, K., Heininen, H., Arumägi, E., Kalamees, T., Hasu, T., Lolli, N., Kurnitski, J., Indoor climate and energy performance in nearly zero energy day care centers and school buildings, E3S Web of Conferences, CLIMA 2019 Congress, Vol. 111, 02003, Bu-charest, Romania, 2019.
[7] Merema, B., Breesch, H., Sourbron, M., Impact of demand controlled ventilation on indoor air quality, ventilation effectiveness and energy efficiency in a school building, Proceedings of the 14th International conference of indoor air quality and climate, Indoor Air 2016, Vol. 2016, pp. 3-8, Ghent, Belgium, 2016.
[8] Aerts, D., Minnen, J., Glorieux, I., Wouters, I., Descamps, F., A method for the identifica-tion and modelling of realistic domestic occupancy sequences for building energy demand simulations and peer comparison, Building and Environment, 75 (2014), pp. 67-78.
[9] Mysen, M., Berntsen, S., Nafstad, P., Schild, P.G., Occupancy density and benefits of de-mand-controlled ventilation in Norwegian primary schools, Energy and Buildings, 37 (2005), pp. 1234-1240.
[10] Sekki, T., Airaksinen, M., Saari, A., Effect of energy measures on the values of energy efficiency indicators in Finnish daycare and school buildings, Energy and Buildings, 139 (2017), pp. 124-132.
[11] Sekki, T., Airaksinen, M., Saari, A., Impact of building usage and occupancy on energy consumption in Finnish daycare and school buildings, Energy and Buildings, 105 (2015), pp. 247-257.
[12] EN 16798-2:2019, Energy Performance of Buildings – Ventilation for Buildings - Part 2: Interpretation of the Requirements in EN 16798-1. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics - Module M1–6. Brussels, 2019.
[13] SketchUp, (2020). https://www.sketchup.com/.
[14] Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl, W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K., Liesen, R.J., Fisher, D.E., Witte, M.J., Glazer, J., EnergyPlus: creating a new-generation building energy simulation program, Energy and Buildings, 33 (2001), pp. 319-331.
[15] Witte, M.J., Henninger, R.H., Clazer, J., Crawley, D.B., Testing and validation of a new building energy simulation program, Proceedings of 7th IBPSA International Conference, Rio de Janiero, Brazil, 2001, pp. 353-360, ISBN 85-901939-3-4.
[16] Rulebook on Energy Efficiency of Buildings, Ministry of Construction, Transport and Infra-structure, Republic of Serbia, Official Gazette 61/2011.
[17] Ahmed, K., Akhondzada, A., Kurnitski, J., Olesen, B., Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards, Sustainable Cities and So-ciety, 35 (2017), pp. 134-144.