Optimizacija za održivosti objekata

##plugins.themes.bootstrap3.article.main##

Aleksandar Petrovski Jan Kazak

Apstrakt

U toku projektovajna objakata, njihova struktura se najpre dizajnira, evaluira po sto niz iterativan process se predlaga novo projektno resenje, sto prestavlja konvencionalan i neefktivan pristup. Uzimajuci u obzir da rane projektne odluke uticu na 70% od performanse projekta i njegovu odrlizvost, nosiva strukura objekta e od velikog znacaja za optmilani performansi i odrzlivosti objekta. Zbog toga, sa cilja da se unapredi proektni proces, potrebna je optimizaciska alatka za efikasna izrada optmilana proektna resenja koja ce biti dalje evaluirana. U istrazivanja, a i u arhitektonskoj praksi, nekoliko metoda za strukturna optimizacija su razvijeni, a del od njih so istrazeni i prezentovani u ovaj rad. Optimizaciske alatke su istrazeni sa stanovista njihova upotreblivoska i aplikaciju za optimizacij razlicite gradezne elemene i strukturne sustem. Analiza na relevantni naucni dostignuca ukazuce da tezina strukturne elemente moze biti optimizovana za 10-15%, direktno uticajuci na odrzlivosti objekta i namaljenje njegov uticaj vrz zivotnoj sredini. Rezultati pokazuju veliki potencijal optimizacione alatke i identifikuje moguvnosti za njihova sira aplikacija u arhitektonskoj praksi, osobito u toku projektna faza i zadaju nasoke za njihov dalji razvoj.

##plugins.themes.bootstrap3.article.details##

Kako citirati
PETROVSKI, Aleksandar; KAZAK, Jan. Optimizacija za održivosti objekata. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 52, n. 1, p. 131-137, dec. 2021. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6707>. Datum pristupa: 29 nov. 2022
Sekcija
Članci

Reference

[1] Cross N. Expertise in design: an overview. Design Studies 2004;25:427–41. https://doi.org/10.1016/j.destud.2004.06.002.
[2] Bogenstätter U. Prediction and optimization of life-cycle costs in early design. Building Re-search & Information 2000;28:376–86. https://doi.org/10.1080/096132100418528.
[3] Thompson JMT, Sigmund O. Topology optimization: a tool for the tailoring of structures and materials. Philosophical Transactions of the Royal Society of London Series A: Mathe-matical, Physical and Engineering Sciences 2000;358:211–27. https://doi.org/10.1098/rsta.2000.0528.
[4] Bendsoe MP, Sigmund O. Topology Optimization: Theory, Methods, and Applications. 2nd edition. Springer; 2011.
[5] Rozvany GIN. A critical review of established methods of structural topology optimization. Structural Multidisciplinary Optimization 2009;37:217–37. https://doi.org/10.1007/s00158-007-0217-0.
[6] Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization. Com-puter Methods in Applied Mechanics and Engineering 1991;93:291–318. https://doi.org/10.1016/0045-7825(91)90245-2.
[7] Beghini LL, Beghini A, Katz N, Baker WF, Paulino GH. Connecting architecture and engi-neering through structural topology optimization. Engineering Structures 2014;59:716–26. https://doi.org/10.1016/j.engstruct.2013.10.032.
[8] Martins JRRA, Lambe AB. Multidisciplinary Design Optimization: A Survey of Architec-tures. AIAA Journal 2013;51:2049–75. https://doi.org/10.2514/1.J051895.
[9] M.C.E AGMM. LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1904;8:589–97. https://doi.org/10.1080/14786440409463229.
[10] Rozvany GIN, Prager W. Optimal design of partially discretized grillages. Journal of the Mechanics and Physics of Solids 1976;24:125–36. https://doi.org/10.1016/0022-5096(76)90022-3.
[11] Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homog-enization method. Computer Methods in Applied Mechanics and Engineering 1988;71:197–224. https://doi.org/10.1016/0045-7825(88)90086-2.
[12] Norato JA, Bendsøe MP, Haber RB, Tortorelli DA. A topological derivative method for topology optimization. Structural Multidisciplinary Optimization 2007;33:375–86. https://doi.org/10.1007/s00158-007-0094-6.
[13] Allaire G, Gournay F de, Jouve F, Toader A-M. Structural optimization using topological and shape sensitivity via a level set method. Control and Cybernetics 2005;34:59–80.
[14] Kicinger R, Arciszewski T, Jong KD. Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures 2005;83:1943–78. https://doi.org/10.1016/j.compstruc.2005.03.002.
[15] Mavelino Ri, Shook D, Beghini A, Long E, Sarkisian M. Efficient flat-slab post-tensioning layouts guided by topology optimization. Proceedings of the IASS Symposium 2018 Creativity in Structural Design, MIT, Boston, USA: 2018.
[16] Petrovski, A., Pancovska-Zileska V., Zujo, V., Improving building sustainability by opti-mizing facade shape and solar insolation use. International Scientific Conference People, Buildings and Environment 2014 (PBE2014), pp. 374-383, Kromeriz, Czech Republic.
[17] Boonstra S, Blom K van der, Hofmeyer H, Emmerich MTM (Michael). Combined super-structured and super-structure free optimisation of building spatial designs. Intelligent com-puting in engineering. EG-ICE International workshop. 24TH 2017. : EG-ICE 2017, Universi-ty of Nottingham; 2017, p. 23–34.
[18] García-Segura T, Yepes V, Martí JV, Alcalá J. Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures 2014;11:1190–205. https://doi.org/10.1590/S1679-78252014000700007.
[19] Jedrzejuk H, Marks W. Optimization of shape and functional structure of buildings as well as heat source utilisation. Partial problems solution. Building and Environment 2002;37:1037–43. https://doi.org/10.1016/S0360-1323(01)00099-3.
[20] Pourzeynali S, Zarif M. Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms. Journal of Sound and Vibration 2008;311:1141–60. https://doi.org/10.1016/j.jsv.2007.10.008.
[21] Gan VJL, Wong CL, Tse KT, Cheng JCP, Lo IMC, Chan CM. Parametric modelling and evolutionary optimization for cost-optimal and low-carbon design of high-rise reinforced concrete buildings. Advanced Engineering Informatics 2019;42:100962. https://doi.org/10.1016/j.aei.2019.100962.
[22] Steiner B, Mousavian E, Saradj FM, Wimmer M, Musialski P. Integrated Structural–Architectural Design for Interactive Planning. Computer Graphics Forum 2017;36:80–94. https://doi.org/10.1111/cgf.12996.
[23] Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I. Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence 2018;48:805–20. https://doi.org/10.1007/s10489-017-1019-8.