Efekti konfiguracije podnih difuzora u razvojnoj fazi

##plugins.themes.bootstrap3.article.main##

Mohammad Reza Ganjali Bonjar Hamed Moslehi Sevil Berenji Javad Ganjali Bonjar Norbert Harmathy

Apstrakt

Sistem za podnu distribuciju vazduha (UFAD) je strategija mehaničke ventilacije koja je bila tema nedavnih studija zbog nekoliko potencijalnih prednosti, kao što je poboljšana toplotna udobnost u zatvorenom prostoru. U sistemu UFAD, zauzeta zona se direktno napaja klimatizovanim hladnim vazduhom, formirajući termičku slojevitost od donje zone prostora do njegove gornje zone. Ova studija predlaže da se obezbede efekti termičke stratifikacije i distribucije brzine vazduha na toplotni komfor u zatvorenom prostoru. S tim u vezi, u obrazovnom prostoru sa 30 osoba, izvedene su četiri različite konfiguracije dovodnih difuzora uključujući tri UFAD sistema i jedan sistem distribucije vazduha za ventilaciju (DVAD). Štaviše, detaljnije se istražuje mogućnost lokalne toplotne nelagodnosti i promaje, koja nastaje usled poremećaja protoka vazduha u UFAD sistemima. Inicijalno generisanje mreže je sprovedeno korišćenjem GAMBIT softvera, a softver OpenFOAM je korišćen za simulaciju UFAD i DVAD sistema protoka vazduha sa različitim konfiguracijama difuzora. Rezultati su pokazali da je detaljno razumevanje vazdušnog transporta i njegovih posledica na toplotni komfor u četiri različita slučaja i pokazali da konfiguracija difuzora ima značajnu ulogu na toplotni komfor u zatvorenom prostoru.

##plugins.themes.bootstrap3.article.details##

Kako citirati
BONJAR, Mohammad Reza Ganjali et al. Efekti konfiguracije podnih difuzora u razvojnoj fazi. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 52, n. 1, p. 139-151, dec. 2021. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6708>. Datum pristupa: 29 nov. 2022
Sekcija
Članci

Reference

1. Zhang K, Zhang X, Li S. Simplified model for desired airflow rate in underfloor air distri-bution (UFAD) systems. Applied Thermal Engineering. 2016 Jan 25; 93:244–50.
2. Fan Y, Li X, Yan Y, Tu J. Overall performance evaluation of underfloor air distribution system with different heights of return vents. Energy and Buildings. 2017;147.
3. Carreira P, Costa AA, Mansur V, Arsénio A. Can HVAC really learn from users? A simula-tion-based study on the effectiveness of voting for comfort and energy use optimization. Sustainable Cities and Society. 2018;41.
4. Shao X, Li X, Ma X, Liang C. Multi-mode ventilation: An efficient ventilation strategy for changeable scenarios and energy saving. Building and Environment. 2017;115.
5. Fong KF, Lee CK, Lin Z. Investigation on effect of indoor air distribution strategy on solar air-conditioning systems. Renewable Energy. 2019;131.
6. Daemei AB, Limaki AK, Safari H. Opening Performance Simulation in Natural Ventilation Using Design Builder (Case Study: A Residential Home in Rasht). In: Energy Procedia. 2016.
7. Webster T, Bauman F, Reese J. UC Berkeley HVAC Systems Title Underfloor air distribu-tion: thermal stratification Permalink https://escholarship.org/uc/item/9145t9gz Publication Date [Internet]. 2002. Available from: www.ashrae.org.
8. Awad AS, Calay RK, Badran OO, Holdo AE. An experimental study of stratified flow in enclosures. Applied Thermal Engineering. 2008;28(17–18).
9. Heidarinejad G, Fathollahzadeh MH, Pasdarshahri H. Effects of return air vent height on energy consumption, thermal comfort conditions and indoor air quality in an under-floor air distribution system. Energy and Buildings. 2015;97.
10. Choi JH, Yeom D. Investigation of the relationships between thermal sensations of local body areas and the whole body in an indoor built environment. Energy and Buildings. 2017;149.
11. Limane A, Fellouah H, Galanis N. Thermo-ventilation study by OpenFOAM of the airflow in a cavity with heated floor. Building Simulation. 2015;8(3).
12. Lin YJP, Tsai TY. An experimental study on a full-scale indoor thermal environment using an Under-Floor Air Distribution system. Energy and Buildings. 2014;80.
13. Kuo JY, Chung KC. The effect of diffuser’s location on thermal comfort analysis with different air distribution strategies. Journal of Thermal Envelope and Building Science. 1999;22(JAN.).
14. Raftery P, Bauman F, Schiavon S, Epp T. Laboratory testing of a displacement ventilation diffuser for underfloor air distribution systems. Energy and Buildings. 2015;108.
15. Lin Z, Chow TT, Tsang CF, Fong KF, Chan LS. CFD study on effect of the air supply loca-tion on the performance of the displacement ventilation system. Building and Environment. 2005;40(8).
16. Megerson James E. Underfloor_for_schools. ASHRAE Journal. 2008 May;28–32.
17. Lin Z, Chow TT, Fong KF, Wang Q, Li Y. Comparison of performances of displacement and mixing ventilations. Part I: Thermal comfort. International Journal of Refrigeration. 2005 Mar;28(2):276–87.
18. Chung JD, Hong H, Yoo H. Analysis on the impact of mean radiant temperature for the thermal comfort of underfloor air distribution systems. Energy and Buildings. 2010;42(12).
19. Schiavon S, Lee KH, Bauman F, Webster T. Simplified calculation method for design coo-ling loads in underfloor air distribution (UFAD) systems. Energy and Buildings. 2011;43(2–3).
20. thermal-comfort-analysis-and-applications-in-environmental-engin-1972.
21. Fanger PO, Melikov AK, Hanzawa H, Ring J. Air turbulence and sensation of draught. E-nergy and Buildings. 1988;12(1).
22. Liu W, Lian Z, Yao Y. Optimization on indoor air diffusion of floor-standing type room air-conditioners. Energy and Buildings. 2008;40(2):59–70.