Na putu ka dostizanju minimalne vrednosti toplotne provodljivosti termoizolacionih materijala

##plugins.themes.bootstrap3.article.main##

Branislav Petrović Milan Gojak Đorđe Kozić

Apstrakt

Put ka dostizanju minimalne vrednosti toplotne provodljivosti termoizolacionih materijala je od velikog značaja za probleme energetske efikasnosti. Radi poboljšanja termičkih karakteristika tradicionalnih i novih termoizolacionih materijala, sprovode se intenzivna istraživanja sa ciljem dobijanja materijala koji su ekonomski isplativi, a istovremeno poseduju minimalne vrednosti toplotne provodljivosti. Osim toga, reč je i o smanjenju štetnog uticaja na životnu sredinu i postizanju zgrada sa potrošnjom energije bliskom nuli. Rad daje pregled karakteristika sadašnjih i budućih termoizolacionih materijala, navodeći njihove prednosti i nedostatatke. Cilj je da se istraži koji termoizolacioni materijali su na dobrom putu da dostignu minimalne vrednosti toplotne provodljivosti, i eventualno njihove najniže moguće vrednosti. Međutim, i ako bi bio postignut minimum, to istovremeno ne bi značilo da su ovi materijali ispunili sve zahteve potrebne za postizanje održive i zelene gradnje, pa je od velikog značaja poznavanje svih njihovih ograničenja.  

##plugins.themes.bootstrap3.article.details##

Kako citirati
PETROVIĆ, Branislav; GOJAK, Milan; KOZIĆ, Đorđe. Na putu ka dostizanju minimalne vrednosti toplotne provodljivosti termoizolacionih materijala. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 52, n. 1, p. 177-186, dec. 2021. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6711>. Datum pristupa: 23 jan. 2022
Sekcija
Članci

Reference

[1] A. Dalehaug, Properties, Requirements and Possibilities for Traditional, State- of-the-Art and Future Thermal Building Insulation Materials and Solutions. 9th Nordic Symposium on Building Physics - NSB 2011, 2011 2:593–600.
[2] K. Cornwell, The flow of heat. Van Nostrand Reinhold 1977.
[3] M Terzić.Određivanje toplotne provodljivosti slabo provodnih čvrstih materijala metodom jed-nostrane zaštićene tople ploče, Ph.D. Thesis, Beograd, 2018.
[4] S. Schiavoni, F. D’Alessandro, F. Bianchi, F. Asdrubali, Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Review 2016, 62:988–1011.
[5] L. D. Hung Anh, Z. Pásztory, An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineerng 2021, 44:1-16.
[6] V. Apostolopoulou-Kalkavoura, P. Munier, L. Bergström, Thermally Insulating Nanocellulose-Based Materials. Advanced Materials 2021, 33(28):1-17.
[7] Binz, A, Moosmann, A, Steinke, G, Schonhardt, U, Fregnan, F, Simmler, H, Brunner, S, Ghazi, K, Bundi, R, Heinemann, U, Schwab, H, Cauberg, H, Tenpierik, M, Johannesson, G, Thorsell, T, Erb, M, Nussbaumer, B, HiPTI - High Performance Thermal Insulation. Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications 2005, Switzerland.
[8] B. P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions - Properties, requirements and possibilities. Energy Buildings 2011, 43(10)2549–2563.
[9] T. Thorsell, Advances in Thermal Insulation - Vacuum insulation panels and thermal efficiency to reduce energy usage in buildings, KTH Royal Institute of Technology, Department of Civil and Ar-chitectural Engineering, Division of Building Technology, Ph.D. Thesis. 2012.
[10] M. Alam, H. Singh, M.C. Limbachiya, SustainableVacuum Insulation Panels (VIPs) for building construction industry - A review of the contemporary developments and future directions. Applied Energy 2011, 88(11):3592–3602.
[11] L. Aditya, A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Review 2017, 73:1352–1365.
[12] S. E. Kalnæs, B. P. Jelle, Vacuum insulation panel products: A state-of-the-art review and future research pathways. Applied Energy 2014, 116(7465): 355–375.
[13] M. Reim, Silica aerogel granulate material for thermal insulation and daylighting. Solar Energy 2005, 79(2):131–139.
[14] R. Baetens, B. P. Jelle, A. Gustavsen, S. Grynning, Gas-filled panels for building applications: A state-of-the-art review. Energy Buildings 2010, 42 (11):1969–1975.
[15] B. P. Jelle, A. Gustavsen, R. Baetens, The path to the high performance thermal building insulation materials and solutions of tomorrow. Journal of Building Physics 2010, 34(2):99–123.
[16] B. Petter Jelle, Nano-based thermal insulation for energy-efficient buildings. Start-Up Creation: The Smart Eco-Efficient Built Environment 2016, 129-181.
[17] B. P. Jelle, High-performance nano insulation materials for energy-efficient buildings. Advanced Materials - TechConnect Briefs 2017, 2(7491):289–292.