Efekat osenčenja od susednih zgrada na energetski učinak nestambene zgrade za klimatske uslove u Srbiji
##plugins.themes.bootstrap3.article.main##
Apstrakt
U ovom radu ispitan je uticaj prisustva okolnih objekata na energetsko ponašanje jedne nestambene zgrade za klimatske uslove u Srbiji. Po prvi put je ovaj uticaj razmatran za različite rasporede prisustva ljudi, stvarno, prosečno godišnje i maksimalno prisustvo, i dve različite metode ventilacije (Metoda 1 i 3), definisane prema trenutno važećem standardu EN 16798. Nalazi ove studije ukazuju na to da predviđene ukupne potrebe za toplotnom energijom zgrade mogu biti pod značajnim uticajem usled osenčenja koje izazivaju susedni objekti. Kroz energetske simulacije zgrade ustanovljeno je da zgrada sa ekeftom osenčenja troši od 6.43% до 11% više energije od zgrade kod koje je prisustvo okolnih objekata zanemareno. Zanemarivanje ovog uticaja vodi ka pojavi greške u predviđanju energetske potrošnje zgrade. Posmatrajući istovremeni uticaj prisustva ljudi i okolnih objekata ova greška može dostići vrednost od čak 21.13%. Na osnovu prikazanih rezultata, kako bi se predviđeno energetsko ponašanje zgrade približilo stvarnom ponašanju, preporučuje se upotreba rasporeda stvarnog prisustva ljudi. Raspored maksimalnog prisustva ljudi, u svakom slučaju, treba izbegavati. Iz istog razloga, efekat osenčenja od susednih zgrada treba uzeti u obzir u studijama energetskih simulacija zgrade. Takođe, ovaj efekat treba uzeti u razmatranje prilikom planiranja i razvoja novih urbanih naselja.
##plugins.themes.bootstrap3.article.details##
Reference
[2] Merema, B., Breesch, H., Sourbron, M., Impact of demand controlled ventilation on indoor air quality, ventilation effectiveness and energy efficiency in a school building, Proceedings of the 14th International conference of indoor air quality and climate, Indoor Air 2016, Vol. 2016, pp. 3-8, Ghent, Belgium, 2016.
[3] Aerts, D., Minnen, J., Glorieux, I., Wouters, I., Descamps, F., A method for the identifica-tion and modelling of realistic domestic occupancy sequences for building energy demand simulations and peer comparison, Building and Environment, 75 (2014), pp. 67-78.
[4] Mysen, M., Berntsen, S., Nafstad, P., Schild, P.G., Occupancy density and benefits of de-mand-controlled ventilation in Norwegian primary schools, Energy and Buildings, 37 (2005), pp. 1234-1240.
[5] Sekki, T., Airaksinen, M., Saari, A., Effect of energy measures on the values of energy effi-ciency indicators in Finnish daycare and school buildings, Energy and Buildings, 139 (2017), pp. 124-132.
[6] Sekki, T., Airaksinen, M., Saari, A., Impact of building usage and occupancy on energy con-sumption in Finnish daycare and school buildings, Energy and Buildings, 105 (2015), pp. 247-257.
[7] Hu, Y., Cheng, X., Wang, S., Times series forecasting for urban building energy consump-tion based on graph convolutional network, Applied Energy, 307 (2022), https://doi.org/10.1016/j.apenergy.2021.118231.
[8] Faure, X., Johansson, T., Pasichnyi, O., The impact of detail, shadowing and thermal zon-ing levels on urban building energy modelling (UBEM) on a district scale, Energies, 15 (2022), https://doi.org/10.3390/en15041525.
[9] Farrar-Nagy, S., Anderson, R., Hancock, C.E., Impacts of shading and glazing combina-tions on residential energy use in a hot dry climate, Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, California, 2000, pp. 163-176, https://www.osti.gov/servlets/purl/763375.
[10] Simá, E., Chagolla-Aranda, M.A., Huelsz, G., Tovar, R., Alvarez, G., Tree and neighbor-ing buildings shading effects on the thermal performance of a house in a warm sub-humid climate, Building Simulation, 8 (2015), pp. 711-723.
[11] Tereci, A., Tahira Elias Ozkan, S., Eicker, U., Energy benchmarking for residential build-ings, Energy and Buildings, 60 (2013), pp. 92-99.
[12] Chan, A.L.S., Effect of adjacent shading on the thermal performance of residential buildings in a subtropical region, Applied Energy, 92 (2012), pp. 516-522.
[13] Nikoofard, S., Ismet Ugursal, V., Beausoleil-Morrison, I., Effect of external shading on household energy requirement for heating and cooling in Canada, Energy and Buildings, 43 (2011), pp. 1627-1635.
[14] *** EN 16798-2:2019, Energy Performance of Buildings – Ventilation for Buildings - Part 2: Interpretation of the Requirements in EN 16798-1. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quali-ty, Thermal Environment, Lighting and Acoustics - Module M1–6. Brussels, 2019.
[15] *** SketchUp, (2020). https://www.sketchup.com/.
[16] Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl, W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K., Liesen, R.J., Fisher, D.E., Witte, M.J., Glazer, J., EnergyPlus: creating a new-generation building energy simulation program, Energy and Buildings, 33 (2001), pp. 319-331.
[17] Witte, M.J., Henninger, R.H., Clazer, J., Crawley, D.B., Testing and validation of a new building energy simulation program, Proceedings of 7th IBPSA International Conference, Rio de Janiero, Brazil, 2001, pp. 353-360, ISBN 85-901939-3-4.
[18] *** Rulebook on Energy Efficiency of Buildings, Ministry of Construction, Transport and Infrastructure, Republic of Serbia, Official Gazette 61/2011.
[19] Nikolić, N., Prodanović, M., Jovanović, D., Lukić, N., Different ventilation methods and their impact on energy consumption for heating a kindergarten, Proceedings of 52nd Interna-tional HVAC&R Congress and Exhibition, Belgrade, Serbia, 2021, pp. 87-96, ISBN 978-86-85535-11-6.
[20] Ahmed, K., Akhondzada, A., Kurnitski, J., Olesen, B., Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards, Sustainable Cities and So-ciety, 35 (2017), pp. 134-144.
[21] *** Climate data, Climate.OneBuilding.Org, https://climate.onebuilding.org/, Accessed 15th of March 2021.