Napredno zastakljivanje zgrada: stanje umetnosti i perspektive njihove upotrebe u mediteranskoj klimi

##plugins.themes.bootstrap3.article.main##

Effrosyni Giama Kostantinos Alafropatis Agis M. Papadopoulos

Apstrakt

Omogači zgrada sa velikim zastakljenim fasadama su postale sve popularnije u ispunjavanju zahteva moderne arhitekture. Zastakljivanje, kao konstruktivni materijal, može igrati ključnu ulogu u poboljšanju energetskih karakteristika zgrade jer se procenjuje da su zavese odgovorne za oko 60% toplotnih gubitaka kroz konstrukciju stambenih zgrada (Cuce i Riffat, 2015). Ova studija predstavlja kratak istraživački pregled novih tehnologija zastakljivanja, procenjuje uticaj njihovih tehničkih karakteristika i istražuje njihov potencijal za implementaciju u modelovanoj kancelarijskoj jedinici koristeći softverEnergyPlus. Studija zaključuje da, u zavisnosti od orijentacije objekata i ambijentalne klime, odgovarajući izbor vrste zastakljivanja može dovesti do značajne uštede primarne energije. Potencijalna upotreba elektrohromskog zastakljivanja pojavila se kao najefikasnija opcija, sa procenjenom uštedom energije u rasponu od 20%.

##plugins.themes.bootstrap3.article.details##

Kako citirati
GIAMA, Effrosyni; ALAFROPATIS, Kostantinos; PAPADOPOULOS, Agis M.. Napredno zastakljivanje zgrada: stanje umetnosti i perspektive njihove upotrebe u mediteranskoj klimi. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 53, n. 1, p. 55-66, june 2023. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/6935>. Datum pristupa: 26 feb. 2024
Sekcija
Opšta problematika KGH

Reference

[1] Cuce, E., & Riffat, S. B. (2015a). A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 41, 695–714.
[2] Cuce, E., & Riffat, S. B. (2015b). Vacuum tube window technology for highly insulating building fabric: An experimental and numerical investigation. Vacuum, 111, 83–91.
[3] Cupelli, D., Nicoletta, F. P., Manfredi, S., De Filpo, G., & Chidichimo, G. (2009). Electrically switchable chromogenic materials for external glazing. Solar Energy Materials and Solar Cells, 93(3), 329–333.
[4] Fang, Y., Hyde, T. J., Arya, F., Hewitt, N., Wang, R., & Dai, Y. (2015). Enhancing the thermal performance of triple vacuum glazing with low-emittance coatings. Energy and Buildings, 97, 186–195.
[5] Gao, T., Ihara, T., Grynning, S., Jelle, B. P., & Lien, A. G. (2016). Perspective of aerogel glazings in energy efficient buildings. Building and Environment, 95, 405–413.
[6] Gao, T., Jelle, B. P., & Gustavsen, A. (2016). Building Integration of Aerogel Glazings. Procedia Engineering, 145(1877), 723–728.
[7] Gorgolis, G., & Karamanis, D. (2016). Solar energy materials for glazing technologies. Solar Energy Materials and Solar Cells, 144, 559–578.
[8] Granqvist, C. G. (2015). Recent progress in thermochromics and electrochromics: A brief survey. Thin Solid Films, 614, 90–96.
[9] Hee, W. J., Alghoul, M. A., Bakhtyar, B., Elayeb, O., Shameri, M. A., Alrubaih, M. S., & Sopian, K. (2015). The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews, 42, 323–343.
[10] Hočevar, M., Bogati, S., Georg, A., & Opara Krašovec, U. (2017). A photoactive layer in photochromic glazing. Solar Energy Materials and Solar Cells, 171(June), 85–90.
[11] Ismail, K. A. R., & Henríquez, J. R. (2002). Parametric study on composite and PCM glass systems. Energy Conversion and Management, 43(7), 973–993.
[12] Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., & Hart, R. (2012). Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 96(1), 1–28.
[13] KENAK. (2017). Official Gazette of the Hellenic Republic, Regulation of Energy Performance of Buildings, KENAK, Athens, Greece, 2017.
[14] Lee, E. S., Pang, X., Hoffmann, S., Goudey, H., & Thanachareonkit, A. (2013). An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives. Solar Energy Materials and Solar
[15] Lim, S. H. N., Isidorsson, J., Sun, L., Kwak, B. L., & Anders, A. (2013). Modeling of optical and energy performance of tungsten-oxide-based electrochromic windows including their intermediate states. Solar Energy Materials and Solar Cells, 108,
[16] Lolli, N., & Andresen, I. (2016). Aerogel vs. argon insulation in windows: A greenhouse gas emissions analysis. Building and Environment, 101, 64–76.
[17] Marco Casini. (2016). Advanced Materials and Nanotechnology to Improve Energy-Efficiency and Environmental Performance. In Smart Buildings (pp. 305–325). Woodhead.
[18] Pal, S. K., Alanne, K., Jokisalo, J., & Siren, K. (2016). Energy performance and economic viability of advanced window technologies for a new Finnish townhouse concept. Applied Energy, 162, 11–20.
[19] Tavares, P. F., Gaspar, A. R., Martins, A. G., & Frontini, F. (2014). Evaluation of electrochromic windows impact in the energy performance of buildings in mediterranean climates. Energy Policy, 67, 68–81.
[20] Weinläder, H., Beck, A., & Fricke, J. (2005). PCM-facade-panel for daylighting and room heating. Solar Energy, 78(2), 177–186.
[21] Zakirullin, R.S. (2020). Chromogenic materials in smart windows for angular-selective filtering of solar radiation, Materials Today Energy, 17, 100476, ISSN 2468-6069, https://doi.org/10.1016/j.mtener.2020.100476.