Očuvanje energije integracijom PCM u omotače zgrada

##plugins.themes.bootstrap3.article.main##

Ekrem Tunçbilek Müslüm Arici

Apstrakt

This study investigates the impact of Phase Change Material (PCM) placement on energy conservation in a detached house, specifically focusing on outer walls (separately), flat roofs, and all outer wall applications. The research involves thermal analyses considering differnt melting temperatures and PCM layer thicknesses using EnergyPlus building simulation software. The optimal melting temperature for PCM placement is determined to be 25 °C for north, south, and east-facing walls, while it is 27 °C for west-facing walls. Interestingly, the orientation of the outer wall does not significantly affect the melting temperature selection. Furthermore, PCM25 is found to be the optimal choice for flat roof application as well. The results highlight the importance of selecting the right melting temperature. For instance, at a 20 mm PCM layer thickness, PCM25 yields an impressive energy saving of 397.8 kWh, while PCM21 only conserves 190.9 kWh. Thus, the choice of PCM21 is shown to be the least effective for energy conservation. Comparing different PCM placements, it is observed that PCM placement on flat walls (FW) provides the highest energy savings of 432.6 kWh, while all wall placement (AW) still offers a substantial energy conservation of 397.8 kWh. These findings underscore the potential of PCM placement strategies in enhancing energy efficiency in detached houses.

##plugins.themes.bootstrap3.article.details##

Kako citirati
TUNÇBILEK, Ekrem; ARICI, Müslüm. Očuvanje energije integracijom PCM u omotače zgrada. Zbornik Međunarodnog kongresa o KGH, [S.l.], v. 54, n. 1, p. 69-74, apr. 2024. Dostupno na: <https://izdanja.smeits.rs/index.php/kghk/article/view/7880>. Datum pristupa: 15 sep. 2024
Sekcija
Članci

Reference

[1] *** International Energy Agency, Key World Energy Statistics 2021. Paris: IEA Publications, 2021.
[2] N. Kannan and D. Vakeesan, Solar energy for future world: – A review, Renew. Sustain. Energy Rev., vol. 62, pp. 1092–1105, Sep. 2016, doi: 10.1016/j.rser.2016.05.022.
[3] C. Vassiliades et al., Building integration of active solar energy systems: A review of geometrical and architectural characteristics, Renew. Sustain. Energy Rev., vol. 164, p. 112482, Aug. 2022, doi: 10.1016/j.rser.2022.112482.
[4] M. Iten, S. Liu, and A. Shukla, A review on the air-PCM-TES application for free cooling and heating in the buildings, Renew. Sustain. Energy Rev., vol. 61, pp. 175–186, 2016, doi: 10.1016/j.rser.2016.03.007.
[5] G. Nouri, Y. Noorollahi, and H. Yousefi, Solar assisted ground source heat pump systems – A review, Appl. Therm. Eng., vol. 163, p. 114351, Dec. 2019, doi: 10.1016/j.applthermaleng.2019.114351.
[6] L. F. Cabeza, A. Castell, C. Barreneche, A. De Gracia, and A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1675–1695, Apr. 2011, doi: 10.1016/J.RSER.2010.11.018.
[7] H. Akeiber et al., A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renew. Sustain. Energy Rev., vol. 60, pp. 1470–1497, Jul. 2016, doi: 10.1016/J.RSER.2016.03.036.
[8] E. M. Alawadhi, Thermal analysis of a building brick containing phase change material, Energy Build., vol. 40, no. 3, pp. 351–357, 2008, doi: 10.1016/j.enbuild.2007.03.001.
[9] Z. Aketouane et al., Energy savings potential by integrating Phase Change Material into hollow bricks: The case of Moroccan buildings, Build. Simul., vol. 11, no. 6, pp. 1109–1122, Dec. 2018, doi: 10.1007/s12273-018-0457-5.
[10] K. O. Lee, M. A. Medina, E. Raith, and X. Sun, Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management, Appl. Energy, vol. 137, pp. 699–706, Jan. 2015, doi: 10.1016/j.apenergy.2014.09.003.
[11] M. A. Izquierdo-Barrientos, J. F. Belmonte, D. Rodríguez-Sánchez, A. E. Molina, and J. A. Almendros-Ibáñez, A numerical study of external building walls containing phase change materials (PCM), Appl. Therm. Eng., vol. 47, pp. 73–85, Dec. 2012, doi: 10.1016/J.APPLTHERMALENG.2012.02.038.
[12] E. Tunçbilek, M. Arıcı, S. Bouadila, and S. Wonorahardjo, Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region, J. Therm. Anal. Calorim., vol. 141, pp. 613–624, 2020, doi: 10.1007/s10973-020-09320-8.
[13] *** “Turkish Standard: Thermal Insulation Requirements for Buildings (TS 825),” 2013.
[14] *** U.S. Department of Energy, “EnergyPlus Engineering Reference”.