Napredna termalna lutka za procenu lokalne termičke ugodnosti u kabini aviona
##plugins.themes.bootstrap3.article.main##
Apstrakt
Napredne termalne lutke su inovativni alati koji se koriste za procenu termičke ugodnosti u različitim sredinama, kao što su vozila i zgrade. Te lutke su projektovane da simuliraju termoregulacioni sistem ljudskog tela i pružaju tačne podatke o razmeni toplote i transportu vlage. Glavni cilj korišćenja naprednih termalnih lutaka je poboljšanje termičke ugodnosti ljudi, što direktno utiče na njihovo blagostanje i produktivnost. Ovaj rad razmatra razvoj i korišćenje termalne lutke sa 71 površinskom zonom za merenje lokalne termičke ugodnosti. Lutka omogućava merenje ekvivalentne temperature, koja je kvantitativna procena uslova za fizičku ravnotežu toplote. Ekvivalentna temperatura uzima u obzir i razmenu toplote konvekcijom i onu radijacijom između ljudskog tela i okoline. Korišćenjem softvera LabVIEW, lutka može da meri ukupni tok toplote jedne ili više zona, svaka sa specifičnom površinskom temperaturom. Direktno merena količina je potrošnja energije ili gubitak toplote i površinska temperatura. Normalizacijom na unutrašnju klimu, gubitak toplote može se pretvoriti u ekvivalentnu temperaturu. Ekvivalentna temperatura jednog segmenta predstavlja indikator za lokalnu termičku ugodnost. Rad takođe razmatra prednosti korišćenja termalnih lutaka za procenu termičke ugodnosti, kao što su mogućnost procene termičke ugodnosti na lokalnom nivou i predviđanje lokalnih senzacija korišćenjem ekvivalentne temperature ili kroz lokalni PMV koji se zasniva na ekvivalentnoj temperaturi umesto na temperaturi vazduha i operativnoj temperaturi. Rad zaključuje napomenom da integracija termalne lutke sa jednim od respiratornih sistema razvijenih u laboratoriji pruža kompletnije razumevanje interakcija respiratornih tokova sa lokalnom termičkom ugodnošću. Integracija termalne lutke sa respiratornim sistemima razvijenim u laboratoriji omogućava razumevanje interakcija respiratornih tokova sa lokalnom termičkom ugodnošću.
##plugins.themes.bootstrap3.article.details##
Reference
[2] ***, ISO, E., ISO 7730 - Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. 2005.
[3] ***, ISO, Ergonomics of the thermal environment -Evaluation of thermal environments in vehicles Part 3: Evaluation of thermal comfort using human subjects, in ISO 14505-3:2006. 2006.
[4] ***, ISO, Ergonomics of the thermal environment - Evaluation of thermal environments in vehicles - Part 2: Determination of equivalent temperature in ISO 14505-2:2006. 2006.
[5] ***, ASHRAE, ‘‘Thermal environmental conditions for human occupancy,’’ ANSI/ASHRAE Standard 55-2004, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA. 2004.
[6] ***, ISO, Ergonomics of the thermal environment -Evaluation of thermal environments in vehicles Part 2: Determination of Equivalent Temperature, in ISO 14505-3:2006. 2006.
[7] Nilsson, H., Comfort Climate Evaluation with Thermal Manikin Methods and Computer Simulation Models, in Department of Civil and Architectural Engineering Royal Institute of Technology, Sweden; Department of Technology and Built Environment University of Gävle, Sweden. 2004.
[8] Baron, J., Thinking and deciding. Cambridge University Press, 2008. 4.
[9] Baron, J., Against bioethics. Cambridge, MA, 2006. 2006.
[10] Baron, J., Norm-endorsement utilitarianism and the nature of utility. Economics and Philosophy, 1996. 12(1): p. 165-182.
[11] Burke, R., J. Rugh, and R. Farrington. ADAM - The Advanced Automotive Manikin. in International meeting on thermal manikins and modelling. 2003. Strasbourg, France.
[12] Lebbin, P., M. Hosni, and T. Gielda. Design and manufacturing of two thermal observation manikins for automobile applications. in International meeting on thermal manikins and modelling. 2003. Strasbourg, France.
[13] Nilsson, H.O., Thermal comfort evaluation with virtual manikin methods. Building and Environment, 2007. 42(12): p. 4000-4005.
[14] Paul Danca, et al., Evaluation of the thermal comfort for its occupants inside a vehicle during summer. IOP Conference Series: Materials Science and Engineering, 2019. 595.
[15] Danca, P., et al., Experimental study of thermal comfort in a vehicle cabin during the summer season. E3S Web Conf., 2019. 111: p. 01048.
[16] A. Dogeanu, et al., Conception of a real human shaped thermal manikin for comfort assesment, in PhD & DLA Symposium Pesc, Hungary. 2012.
[17] A. Dogeanu, et al., Conception of a simplified seated thermal manikin for CFD validation purposes. Revista Romana de Inginerie Civila, 2013. 5.
[18] Gao, N.P., H. Zhang, and J.L. Niu, Investigating indoor air quality and thermal comfort using a numerical thermal manikin. Indoor and Built Environment, 2007
[19] Croitoru, C., et al., Assessment of virtual thermal manikins for thermal comfort numerical studies. Verification and validation. E3S Web Conf., 2019. 111: p. 02018.
[20] Tacutu, L., et al. Interaction between a local and a general ventilation system for an operating room with patient. in 2019 International Conference on Energy and Environment (CIEM). 2019.
[21] Bode, F., et al. Numerical and experimental study for the development of an advanced model of an operating room with surgeons and patient. in 2017 International Conference on Energy and Environment (CIEM). 2017.
[22] Holmér, I., Thermal manikin history and applications. European Journal of Applied Physiology, 2004. 92 p. 614-618.
[23] Nayak, R. and S. Houshyar, 7 - Comparison of manikin tests with wearer trials, in Manikins for Textile Evaluation. 2017, Woodhead Publishing. p. 159-171.
[24] Jambunathan, K., et al., A review of heat transfer data for single circular jet impingement. International Journal of Heat and Fluid Flow, 1992. 13: p. 106-115.
[25] I. Ursu, D.G., C. Croitoru, P. Danca, I. Nastase. Advanced Thermal Manikin Prototype with Neuro-fuzzy Control System. in COBEE 2018. 2018. Melbourne 2018.
[26] Ion-Guţă, D.D., et al., Advanced Thermal Manikin for Thermal Comfort Assessment in Vehicles and Buildings. Applied Sciences, 2022. 12(4): p. 1826.
[27] Angel Dogeanu, et al. Comfort evaluation using a thermal manikin. Comparison to subjective perception. in SGEM2016 Conference. 2016.
[28] Croitoru, C., et al., Thermal Evaluation of an Innovative Type of Unglazed Solar Collector for Air Preheating. Energy Procedia, 2016. 85: p. 149-155.
[29] I Ursu, D.G., C Croitoru, P Danca, I Nastase. Advanced Thermal Manikin Prototype with Neuro-fuzzy Control System in COBEE 2018. 2018.
[30] Ouhimi, P., et al., Thermal comfort evaluation inside vehicles with classical indices - experimental approach. Romanian Journal of Civil Engineering, 2016. 7(2).
[31] Vartires, A., A. Dogeanu, and P. Danca, The human thermal comfort evaliation inside the passenger compartment, in Proceedings of the 15th International Multidisciplinary Scientific Geoconference 2015: Bulgaria. p. 1113-1120.