Pregled sistema ventilacije avionske kabine: ispitivanje mogućnost zaštitne ventilacije
##plugins.themes.bootstrap3.article.main##
Apstrakt
Prethodna pandemijska situacija istakla je potrebu za naprednim strategijama ventilacije kako bi se smanjio rizik od unakrsne infekcije, obezbedila termička ugodnost i energetska efikasnost. Konvencionalni sistemi za kontrolu okoline aviona (ECS) daju prioritet optimizaciji prostora i sigurnosti, što dovodi do izazova u održavanju kvaliteta vazduha i sprečavanju širenja bolesti putem vazduha. Personalizovani ventilacioni (PV) sistemi, koji direktno, svakom putniku obezbeđuju čist vazduh u zoni disanja, pojavili su se kao rešenje koje obećava. Ti sistemi potencijalno mogu smanjiti rizik od infekcija prenosivih vazduhom i poboljšati kvalitet vazduha ograničavajući mešanje čistog i zagađenog vazduha. Predloženi su različiti pristupi dizajniranju PV sistema, ali je potrebno više istraživanja kako bi bili optimizovani za avione i procenila njihova efikasnost u stvarnom svetu. Ovaj rad predstavlja novi PV sistem niskog momenta sa zaštitnom ulogom protiv patogena prenosivih vazduhom. Numeričke simulacije, podržane neinvazivnim eksperimentalnim merenjima, korišćene su da prikažu efikasnost predloženog sistema. Rezultati simulacije i eksperimenta pokazali su da PV sistem niskog momenta stvara mikroklimu oko svakog putnika sa čistijim i svežijim vazduhom u odnosu na mikroklimu koju proizvode sistemi opšteg mešanja ventilacije. Cilj ovog rada je istraživanje mogućnosti korišćenja PV sistema niskog momenta koji može prodirati u konvektivni granični sloj putnika, poboljšavajući kvalitet vazduha u njihovoj zoni disanja. Uspešna primena takvog PV rešenja je prvi korak ka povećanju zaštite putnika od patogena prenosivih vazduhom. Ova studija je deo većeg projekta koji uključuje eksperimentalna i numerička istraživanja. Procena predloženog PV rešenja analizirana je korišćenjem numeričkih simulacija podržanih eksperimentalnim merenjima u svrhu validacije, što nam omogućava da izvedemo preliminarne zaključke o efikasnosti takvih sistema. Numerički pristup predlaže poređenje dva modela koji reprodukuju mali region unutar kabine aviona koji sadrži četiri sedišta sa virtuelnim putnicima. Mlaz vazduha iz PV difuzora ima nizak moment i privlači se konvektivnim slojem oko tela virtuelne lutke na takav način da isporučuje vazduh licu virtuelnog putnika. Prisustvo PV difuzora menja raspodelu termičkog graničnog sloja putnika na nivou tela i glave. Prisustvo konvektivnog sloja formiranog oko ljudskog tela, u kombinaciji sa efektom interakcije između PV mlaza, menja obrasce protoka vazduha u zoni disanja u pogledu brzine i temperature. Distribucije temperature vazduha pokazuju da je mali region koji odgovara potencijalnom jezgru, lociran ispred lica putnika, hladniji od svoje okoline.
##plugins.themes.bootstrap3.article.details##
Reference
[2] *** https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-theyhappen. 2020.
[3] *** WHO. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. 2020.
[4] Tian, H., et al., An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science, 2020.
[5] *** International Air Transport Association, Traveler Numbers Reach New Heights, in https://www.iata.org/pressroom/pr/Pages/2018-09-06-01.aspx. 2018.
[6] *** https://www.statista.com/statistics/564717/airline-industry-passenger-traffic-globally/. 2020.
[7] *** International Air Transport Association, IATA Forecast Predicts 8.2 billion Air Travelers in 2037, in https://www.iata.org/pressroom/pr/Pages/2018-10-24-02.aspx. 2018.
[8] *** https://www.iata.org/en/pressroom/pr/2020-03-05-01/. 2020.
[9] *** IATA. https://www.iata.org/en/pressroom/pr/2021-04-21-01/. 2021.
[10] *** https://spinoff.nasa.gov/Spinoff2015/t_4.html.
[11] Cui, W., Q. Ouyang, and Y. Zhu, Field study of thermal environment spatial distribution and passenger local thermal comfort in aircraft cabin. Building and Environment, 2014. 80: p. 213-220.
[12] Leitmeyer, K. and C. Adlhoch, Review Article: Influenza Transmission on Aircraft: A Systematic Literature Review. Epidemiology (Cambridge, Mass.), 2016. 27(5): p. 743-751.
[13] Morawska L., J.G., Ristovski Z., Hargreaves M., Mengersen K., Corbett S., Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci., 2009(40): p. 256-259.
[14] Morawska, L., et al., Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science, 2009. 40(3): p. 256-269.
[15] Sterling EM, Arundel A, and Sterling TD, Criteria for Human Exposure to Humidity in Occupied Buildings. ASHRAE Transactions, 1985. 91(1): p. CH85-13.
[16] Yang, W., S. Elankumaran, and L.C. Marr, Relationship between Humidity and Influenza A Viability in Droplets and Implications for Influenza’s Seasonality. PloS One, 2012. 7(10): p. e46789.
[17] Croitoru, C., et al., Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. Renewable and Sustainable Energy Reviews, 2015. 44: p. 304-318.
[18] Nastase, I., et al., A regard on the thermal comfort theories from the standpoint of Electric Vehicle design — Review and perspectives. Energy Reports, 2022. 8: p. 10501-10517.
[19] Gameiro da Silva, M., E.E. Broday, and C. Rodrigues Ruivo, Indoor climate quality assessment in civil aircraft cabins: A field study. Thermal Science and Engineering Progress, 2023. 37: p. 101581.
[20] Nagda, N.L. and H.E. Rector, A critical review of reported air concentrations of organic compounds in aircraft cabins. Indoor Air, 2003. 13(3): p. 292-301.
[21] Bekö, G., et al., Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft. PLoS One, 2015. 10(5): p. e0128454.
[22] Al Hajjar, S. and K. McIntosh, The first influenza pandemic of the 21st century. Ann Saudi Med, 2010. 30(1): p. 1-10.
[23] *** ASHRAE Position Document on Airborne Infectious Diseases. 2020. https://www.ashrae.org/file%20library/about/position%20documents/airborne-infectious-diseases.pdf. 2020.
[24] Rajaratnam, N., Turbulent jets. 1976, Amsterdam, Netherlands: Elsevier Scientific Publishing Company.
[25] Xu, C., et al., Effects of personalized ventilation interventions on airborne infection risk and transmission between occupants. Building and Environment, 2020: p. 107008.
[26] Aliabadi, A.A., et al., Preventing airborne disease transmission: review of methods for ventilation design in health care facilities. Advances in preventive medicine, 2011. 2011.
[27] *** https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6. 2020.
[28] Morawska, L. and J. Cao, Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 2020. 139: p. 105730.
[29] Greenhalgh, T., et al., Ten scientific reasons in support of airborne transmission of SARS-CoV-2. The Lancet, 2021. 397(10285): p. 1603-1605.
[30] Wei, J. and Y. Li, Airborne spread of infectious agents in the indoor environment. American Journal of Infection Control, 2016. 44(9): p. S102-S108.
[31] Luongo, J.C., et al., Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air, 2016. 26(5): p. 666-678.
[32] Zhang, N., et al., Most self-touches are with the nondominant hand. Scientific Reports, 2020. 10(1): p. 10457.
[33] Georgescu, M.R., et al., Personalized ventilation solutions for reducing CO2 levels in the crew quarters of the International Space Station. Building and Environment, 2021. 204: p. 108150.
[34] E. Hunt, et al. Commercial airliner environmental control system in Aerospace Medical Association Annual Meeting. 1995. Anaheim, CA.
[35] Hinninghofen, H. and P. Enck, Passenger well-being in airplanes. Auton Neurosci, 2006. 129(1-2): p. 80-5.
[36] Liu, W., et al., State-of-the-art methods for studying air distributions in commercial airliner cabins. Building and Environment, 2012. 47: p. 5-12.
[37] Breugelmans, J.G., et al., SARS Transmission and Commercial Aircraft. Emerging Infectious Diseases, 2004. 10(8): p. 1502-1503.
[38] Cheng, Y., J. Niu, and N. Gao, Thermal comfort models: A review and numerical investigation. Building and Environment, 2012. 47(Supplement C): p. 13-22.
[39] Veselý, M. and W. Zeiler, Personalized conditioning and its impact on thermal comfort and energy performance – A review. Renewable and Sustainable Energy Reviews, 2014. 34: p. 401-408.
[40] Cao, G., et al., A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment, 2014. 73: p. 171-186.
[41] Pantelic J., S.G.N., Tham K.W., Chao C.Y., Khoo Y.C., Personalized ventilation as a control measure for airborne transmissible disease spread. J. R. Soc. Interface., 2009(6): p. S715–S726. .
[42] Cao, G., et al., A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment, 2014. 73: p. 171-186.
[43] Schmidt, M., D. Muller, and M. Markwart. Numerical study of different air distribution systems for aircraft cabins. in 11th International Conference on Indoor Air Quality and Climate, 17th August to 22nd August. 2008.
[44] Müller, D., M. Schmidt, and B. Müller, Application of a displacement ventilation system for air distribution in aircraft cabins. AST 2011, 2011.
[45] Zhang, T., S. Yin, and S. Wang, An under-aisle air distribution system facilitating humidification of commercial aircraft cabins. Building and Environment, 2010. 45(4): p. 907-915.
[46] Zhang, T., P. Li, and S. Wang, A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes. Building and Environment, 2012. 47: p. 89-99.
[47] Calotă, R.S., M.; Girip, A.; Năstase, I.; Georgescu, M.R.; Tonciu, O., Study on Energy Efficiency of an Off-Grid Vending Machine with Compact Heat Exchangers and Low GWP Refrigerant Powered by Solar Energy. Energies, 2022. 15(4433).
[48] Xu, C., et al., Impacts of airflow interactions with thermal boundary layer on performance of personalized ventilation. Building and Environment, 2018. 135: p. 31-41.
[49] Danca, P., et al., Personalized Ventilation as a Possible Strategy for Reducing Airborne Infectious Disease Transmission on Commercial Aircraft. Applied Sciences, 2022. 12(4): p. 2088.