Pregled tehnika pasivnog hlađenja pomoću materijala za promenu faze za fotonaponske panele: Fokus na numeričkim simulacijama
##plugins.themes.bootstrap3.article.main##
Apstrakt
Fotonaponski (PV) paneli su često izloženi visokim radnim temperaturama koje mogu značajno smanjiti njihovu efikasnost i vek trajanja. Fazno promenljivi materijali (PCM) nude potencijalno rešenje za ublažavanje tog izazova koristeći njihovu sposobnost da apsorbuju i oslobađaju toplotu na određenim temperaturama, čime se održavaju željeni radni uslovi za PV panele. Ova studija pregleda noviju literaturu koja se odnosi na primenu PCM materijala za pasivno hlađenje fotonaponskih panela (PV-PCM). Konkretno se fokusira na različite strategije i tehnike numeričke simulacije koje se koriste za procenu efikasnosti PCM metoda hlađenja. Ove strategije često uključuju optimizaciju izbora PCM materijala, podešavanje debljine PCM-a, izbor materijala za inkapsulaciju PCM-a i/ili variranje ugla nagiba PV panela. Pregled ističe rastući interes za pasivne tehnike hlađenja PV panela koristeći PCM, sa sve sofisticiranijim modelima koji pokazuju poboljšane karakteristike. Međutim, neke studije nedostaju kritični detalji, kao što su uslovi okoline i svojstva PCM materijala, što otežava izvodljivost i reproduktivnost njihovih simulacija.
##plugins.themes.bootstrap3.article.details##
Reference
[2] *** Energy Overview: Development news, research, data | World Bank. Accessed: Sep. 30, 2024. [Online]. Available: https://www.worldbank.org/en/topic/energy/overview
[3] *** Executive summary – Electricity 2024 – Analysis - IEA. Accessed: Sep. 30, 2024. [Online]. Available: https://www.iea.org/reports/electricity-2024/executive-summary
[4] *** Executive summary – World Energy Outlook 2023 – Analysis - IEA. Accessed: Sep. 30, 2024. [Online]. Available: https://origin.iea.org/reports/world-energy-outlook-2023/executive-summary
[5] Jha, P., B. Das, R. Gupta, An experimental study of a photovoltaic thermal air collector (PVTAC): A comparison of a flat and the wavy collector, Appl Therm Eng, vol. 163, p. 114344, Dec. 2019, doi: 10.1016/j.applthermaleng.2019.114344.
[6] Grubišić‐Čabo, F., S. Nižetić, I. Marinić Kragić, D. Čoko, Further progress in the research of fin‐based passive cooling technique for the free‐standing silicon photovoltaic panels, Int J Energy Res, vol. 43, no. 8, pp. 3475–3495, Jun. 2019, doi: 10.1002/er.4489.
[7] *** Photovoltaics | Department of Energy. Accessed: Sep. 30, 2024. [Online]. Available: https://www.energy.gov/eere/solar/photovoltaics
[8] Balaji Jadhav, N., O. Gajare, S. Zele, N. Gogate, A. Joshi, Current status and challenges in silver recovery from End-of-Life crystalline silicon solar photovoltaic panels, Solar Energy, vol. 283, p. 113027, Nov. 2024, doi: 10.1016/j.solener.2024.113027.
[9] Özbaş, E., A novel design of passive cooler for PV with PCM and two-phase closed thermosyphons, Solar Energy, vol. 245, pp. 19–24, Oct. 2022, doi: 10.1016/j.solener.2022.08.072.
[10] Wi, S., S. Jeong, S. J. Chang, J. Lee, S. Kim, Energy‐Efficient Heat Storage using Gypsum Board with Fatty Acid Ester as Layered Phase Change Material, Energy Technology, vol. 5, no. 8, pp. 1392–1398, Aug. 2017, doi: 10.1002/ente.201600689.
[11] Sharaf, M., M. S. Yousef, A. S. Huzayyin, Year-round energy and exergy performance investigation of a photovoltaic panel coupled with metal foam/phase change material composite, Renew Energy, vol. 189, pp. 777–789, Apr. 2022, doi: 10.1016/j.renene.2022.03.071.
[12] Khan, S. Y., et al., Experimental, numerical, and 4E assessment of photovoltaic module using macro-encapsulation of pure and nano phase change material: A comparative analysis, Energy, vol. 290, p. 130162, Mar. 2024, doi: 10.1016/j.energy.2023.130162.
[13] Khanafer, K., A. Al-Masri, A. Marafie, K. Vafai, Thermal performance of solar photovoltaic panel in hot climatic regions: Applicability and optimization analysis of PCM materials, Numeri Heat Transf A Appl, 2023, doi: 10.1080/10407782.2023.2207732.
[14] Mohd Afzanizam Mohd Rosli, et al., Parametric Study of Photovoltaic System Integrated with Organic Phase Change Material using ANSYS, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 106, no. 1, pp. 76–89, Jun. 2023, doi: 10.37934/arfmts.106.1.7689.
[15] Durez, A., M. Ali, A. Waqas, K. Nazir, S. Kumarasamy, Modelling and optimization of phase change materials (PCM)-based passive cooling of solar PV panels in multi climate conditions, Front Energy Res, vol. 11, Jun. 2023, doi: 10.3389/fenrg.2023.1121138.
[16] Xie, G., et al., Simulation of natural convection of n-Hexadecane paraffin inside a porous chamber, Case Studies in Thermal Engineering, vol. 38, Oct. 2022, doi: 10.1016/j.csite.2022.102275.
[17] Aneli, S., R. Arena, A. Gagliano, Numerical Simulations of a PV Module with Phase Change Material (PV-PCM) under Variable Weather Conditions, International Journal of Heat and Technology, vol. 39, no. 2, pp. 643–652, Apr. 2021, doi: 10.18280/ijht.390236.
[18] Díaz, F. A., N. O. Moraga, R. C. Cabrales, Computational modeling of a PV-PCM passive cooling system during a day–night cycle at arid and semi-arid climate zones, Energy Convers Manag, vol. 270, p. 116202, Oct. 2022, doi: 10.1016/j.enconman.2022.116202.
[19] Sheikh, Y., M. Jasim, M. Qasim, A. Qaisieh, M. O. Hamdan, F. Abed, Enhancing PV solar panel efficiency through integration with a passive Multi-layered PCMs cooling system: A numerical study, International Journal of Thermofluids, vol. 23, p. 100748, Aug. 2024, doi: 10.1016/j.ijft.2024.100748.
[20] Lo Brano, V., G. Ciulla, A. Piacentino, F. Cardona, On the Efficacy of PCM to Shave Peak Temperature of Crystalline Photovoltaic Panels: An FDM Model and Field Validation, Energies (Basel), vol. 6, no. 12, pp. 6188–6210, Nov. 2013, doi: 10.3390/en6126188.