Maksimiziranje performansi solarnog sistema za zagrevanje sanitarne tople vode u funkciji optimalnog položaja solarnog prijemnika

##plugins.themes.bootstrap3.article.main##

Jasmina Skerlić Danijela Nikolić Dubravka Živković Jasna Radulović

Apstrakt

U Srbiji se najčešće električna energija koristi za zagrevanje sanitarne vode (SV). Kako je oko 70% električne energije dobija korišćenjem uglja koji oslobađa veliki broj gasova sa efektom staklene bašte, korišćenje solarne energije za zagrevanje sanitarne vode u solarnim sistemima za zagrevanje sanitarne vode (STV) ima povoljan uticaj na očuvanje život-ne sredine. Tokom rada solarni sistem za grejanje sanitarne tople vode generiše različite količine toplote iz solarne energije, dobijaju se različite količine izbegnute elekrične energije. U istraživanjma je primenjen softver EnergyPlus.
Korišćeni vremenski podaci su iz ovlašćenih meteoroloških stanica. U ovom radu pokazana je energetska optimizacija solarnog sistema za zagrevanje STV sa solarnim prijemnikom koji funkcioniše tako što koristi ugao nagiba 37.5° i 12 različitih vrednosti ugla azimuta, po jedan za svaki mesec u toku godine. Ovom prilikom je za svaki solarni sistem za grejanje STV izračunat solarni udeo u funkciji ugla nagiba i ugla azimuta i predstavljen odgovarajućim krivama. Takođe je prikazan i mesečni deficit solarnog udela za odstupanja ugla azimuta, kada on u nekim mesecima nije optimalan. Korišćene su odgovarajuće simulacione i optimizacione rutine sa modifikovanom metodologijom Hooke Jeeves algoritma. Solarni sistemi su poboljšani, tako što je dobijena minimalna potrošnja fosilne energije, smanjena upotreba energetskih resursa, maksimizirana energetska sigurnost, kao minimiziran uticaj na životnu sredinu.

##plugins.themes.bootstrap3.article.details##

Kako citirati
SKERLIĆ, Jasmina et al. Maksimiziranje performansi solarnog sistema za zagrevanje sanitarne tople vode u funkciji optimalnog položaja solarnog prijemnika. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 5, n. 1, p. 139-148, oct. 2017. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/2954>. Datum pristupa: 15 mar. 2025 doi: https://doi.org/10.24094/mkoiee.017.1.5.139.
Sekcija
Energetski izvori i skladištenje energije

Reference

[1] X.Q. Zhai, R.Z. Wang, Experiences on solar heating and cooling in China, Renewable and Sustainable Energy Reviews, 12 (2008) 1110–1128.
[2] Duffie, A., Beckman, A., Solar engineering of thermal processes. New York: Wiley, 1991.
[3] Gunerhan, H., Hepbasli, A., "Determination of the optimum tilt angle of solar collectors for building applications" Building and Environment 42 (2007) 779–783.
[4] N. Nijegorodov, P. K. Jain, Optimum slope of a north-south aligned absorber plate from the north to the south poles, Renewable Energy, Vol. 11, No. i, pp. 107-118, 1997.
[5] Tian Pau Chang, The Sun’s apparent position and the optimal tilt angle of a solar collector in the northern hemisphere, Solar Energy 83 (2009) 1274–1284.
[6] Morcos, V.H., "Optimum tilt angle and orientation for solar collectors in Assiut, Egypt" Renewable Energy 4 (3) (1994) 291 298.
[7] K. Skeiker, Optimum tilt angle and orientation for solar collectors in Syria, Energy Conversion and Management 50 (2009) 2439–2448.
[8] S. Bari, Optimum orientation of domestic solar water heaters for the low latitude countries, Energy Conversion and Management 42 (2001)1205-1214.
[9] D. Ibrahim, Optimum tilt angle for solar collectors used in Cyprus, Renewable Energy, Vol. 6, No. 7, pp. 813 819, 1995.
[10] Mohd Azmi bin Hj Mohd Yakup, Malik, A.Q., "Optimum tilt angle and orientation for solar collector in Brunei Darussalam" Renewable Energy 24 (2001) 223–234.
[11] Hartley, L.E., Martinez-Lozano, J.A., Utrillas, M.P., Tena, F., Pedros, R., "The optimisation of the angle of inclination of a solar collector to maximise the incident solar radiation" Renewable Energy 17 (1999) 291-309.
[12] Tang, R., Wu, T., "Optimal tilt-angles for solar collectors used in China" Applied Energy 79 (2004) 239–248.
[13] Skerlić, J., Radulović, J., Nikolić, D., Bojić, M., "Maximizing performances of variable tilt flatplate solar collectors for Belgrade (Serbia) " J. Renewable Sustainable Energy 5 041820 (2013) doi: 10.1063/1.4819254.
[14] Talebizadeha, P., Mehrabiana, M.A., Abdolzadeh, M., "Prediction of the optimum slope and surface azimuth angles using the Genetic Algorithm" Energy and Buildings 43 (2011) 2998–3005.
[15] Mohammadi, K.,Khorasanizadeh, H.,A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities, Renewable and Sustainable Energy Reviews, Vol. 47, 2015, pp. 504-518.
[16] Adnan Shariah, M-Ali Al-Akhras, I.A. Al-Omari, Optimizing the tilt angle of solar collectors, Renewable Energy 26 (2002) 587–598.
[17] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. Pedersen, R.K. Strand, R.J. Liesen, D.E. Fisher, M.J.Witte, J. Glazer, EnergyPlus: creating a new-generation building energy simulation program, Energy and Buildings 33 (4) (2001) 319–331.
[18] Anonymous, ENERGYPLUS, Input Output Reference - The Encyclopedic Reference to EnergyPlus Input and Output, University of Illinois & Ernest Orlando Lawrence Berkeley National Laboratory, 2009.
[19] R.H. Henninger, M.J. Witte, D.B. Crawley, Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100-E200 test suite, Energy and Buildings 36 (8) (2004) 855–863.
[20] The board of trustees of the University Of Illinois and the regents of the University Of California through the Ernest Orlando Lawrence Berkeley, National Laboratory, ENERGYPLUS, EnergyPlus Engineering Document, The Reference to EnergyPlus Calculations (incaseyouwan-torneedtoknow), March 29, 2004.
[21] Wetter, M., 2004. GenOpt, Generic Optimization Program. User Manual, Lawrence Berkeley National Laboratory, Technical Report LBNL- 54199, p. 109.
[22] M. Wetter, Simulation-Based Building Energy Optimization, Phd. Degree dissertation, University of California, Berkeley, 2004.
[23] C. Audet, J.E. Dennis Jr., Analysis of generalized pattern searches, SIAM Journal on Optimization 13 (3) (2003) 889–903.
[24] M. Wetter, E. Polak, Building design optimization using a convergent pattern search algorithm with adaptive precision simulations, Energy and Buildings, 37, 2005, 603–612.
[25] R. Hooke, T.A. Jeeves, Direct search solution of numerical and statistical problems, Journal of the Association for Computing Machinery 8 (1961) 212–229.