Primena procesa gasifikacije poljoprivrednih ostataka i komunalnog otpada za proizvodnju električne i toplotne energije

##plugins.themes.bootstrap3.article.main##

Aleksandar Jovović Marta Trninić Dragoslava Stojiljković Miroslav Stanojević

Apstrakt

U Srbiji, postoji izražena zainteresovanost za upotrebu biomase (na pr. poljoprivrednih ostataka) i komunalnog otpada u proizvodnji energije, a sve u cilju ostvarivanja pozitivnog uticaja na životnu sredinu, energetske sigurnosti i dugoročne održivosti domaćih zaliha goriva.
Varijacija hemijskog sastava, vlage i visok sadržaj alkalnih elemenata različitih vrsta biomase, potom heterogenost sastava komunalnog otpada, predstavljaju glavni izazov za uspešno i komercijalno korišćenje ovih izvora za proizvodnju električne i/ili toplotne energije.
Do sada, u Srbiji, ne postoji komercijalno postrojenje za proizvodnju električne i/ili toplotne energije sa upotrebom poljoprivrednih ostataka i komunalnog otpada uz korišćenje procesa gasifikacije.
Ovaj rad, prikazuje energetski potencijal poljoprivrednih ostatka i komunalnog otpada, kao i prednosti korišćenja procesa gasifikacije za proizvodnju električne i toplotne energije.
Osnovne prednosti primene procesa gasifikacije poljoprivrednih ostataka i komunalnog otpada za proizvodnju energije su: (a) smanjenje zapremine otpadne mase (oko 80%); (b) uništavanje organskih zagađivača i drugih halogenih ugljovodonika; (v) reciklaža (na primer ponovno korišćenje gvožđa); (d) smanjenje emisije gasova staklene bašte i (e) proizvodnja električne i toplotne energije.
Takođe, u radu su prikazani i uporedni rezultati modeliranja postrojenja sa kombinovanom proizvodnjom električne i toplotne energije sa gasifikacijom kukuruznog oklaska (poljoprivredni ostaci), plastičnog otpada i otpadne gume (komunalni otpad).

##plugins.themes.bootstrap3.article.details##

Kako citirati
JOVOVIĆ, Aleksandar et al. Primena procesa gasifikacije poljoprivrednih ostataka i komunalnog otpada za proizvodnju električne i toplotne energije. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 6, n. 1, p. 79-89, oct. 2018. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/3776>. Datum pristupa: 10 dec. 2018
Sekcija
Životna sredina, održivost i politika

Reference

[1] Bajić, B.Ž., et al., Waste-to-energy status in Serbia, Renewable and Sustainable Energy Reviews, 50 (2015), p. 1437-1444.
[2] Trninić, M., Modeling and Optimization of corn cob Pyrolysis, Ph. D. thesis, University of Bel-grade Faculty of Mechanical Engineering, Belgrade, Serbia, 2015.
[3] Uroševic, S., B. Pejčić, D. Dordevic, Contemporary tendencies in waste management in Serbia, Economics management information technology, 1 (2012), p. 159-166.
[4] Kwak, T.-H., et al., A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner, Energy & Fuels, 19(2005), 6, p. 2268-2272.
[5] Jovanović, B.M., Parović, Stanje i razvoj biomase u Srbiji, Alternativna Energija Srbije, 2009.
[6] Dodić, S.N., et al., Situation and perspectives of waste biomass application as energy source in Serbia, Renewable and Sustainable Energy Reviews, 14(2010), 9, p. 3171-3177.
[7] ***, World Energy Resources Waste to Energy, World Energy Council, 2016.
[8] ***, Gasification the Waste-to-Energy Solution, Gasification Technology Council
[9] Khalil, R.A., Thermal conversion of biomass with emphasis on product distribution, reaction kinetics and sulfur abatement, Ph. D. thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2009.
[10] Diego Mauricio Yepes Maya, et al., Gasification of Municipal Solid Waste for Power Genera-tion in Brazil, a Review of Available Technologies and Their Environmental Benefits, Journal of Chemistry and Chemical Engineering, 10 (2016), p. 249-255
[11] Arena, U., Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32(2012), 4, p. 625-639.
[12] Basu, P., Biomass gasification and pyrolysis: practical design and theory. Oxford, UK: Elsevier Inc. 365. 2010.
[13] Kothari, R., V.V. Tyagi, and A. Pathak, Waste-to-energy: A way from renewable energy sources to sustainable development, Renewable and Sustainable Energy Reviews, 14(2010), 9 p. 3164-3170.
[14] Galeno, G., M. Minutillo, A. Perna, From waste to electricity through integrated plasma gasifi-cation/fuel cell (IPGFC) system, International Journal of Hydrogen Energy, 36(2011), 2, p. 1692-1701.
[15] Rebitanim, N.Z., et al., Potential applications of wastes from energy generation particularly bio-char in Malaysia, Renewable and Sustainable Energy Reviews, 21 (2013) p. 694-702.
[16] F-Chart Software. EES-Engineering Equation Solver 2016, Professional Version V 10.066-3D.
[17] Patuzzi, F., et al., Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy), Energy, 112 (2016): p. 285-293.
[18] Puig-Arnavat, M., J.C. Bruno, A. Coronas, Modeling of trigeneration configurations based on biomass gasification and comparison of performance, Applied Energy, 114 (2014): p. 845-856.
[19] Zabaniotou, A., et al., Bioenergy Technology: Gasification with Internal Combustion Engine Application, Energy Procedia, 42 (2013) p. 745-753.
[20] Wang, L., et al., Is Elevated Pressure Required To Achieve a High Fixed-Carbon Yield of Char-coal from Biomass? Part 1: Round-Robin Results for Three Different Corncob Materials. Energy & Fuels, 25(2011), 7, p. 3251-3265.
[21] Trninić, M., et al., Kinetics of Corncob Pyrolysis, Energy & Fuels, 2012. 26(4): p. 2005-2013
[22] Islam, M.R., et al., Thermal Recycling of Solid Tire Wastes for Alternative Liquid Fuel: The First Commercial Step in Bangladesh, Procedia Engineering, 56(2013), 0, p. 573-582.
[23] Zhou, H., et al., Classification and comparison of municipal solid waste based on thermochemi-cal characteristics, Journal of the Air & Waste Management Association, 64(2014), 5, p. 597-616.
[24] Puig-Arnavat, M., J.C. Bruno, A. Coronas, Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions. Energy & Fuels, 26(2012), 2, p. 1385-1394.
[25] Trninić, M., A. Jovović, D. Stojiljković, A steady state model of agricultural waste pyrolysis: A mini review, Waste Management & Research, 34(2016), 9, p. 851-865.
[26] Senelwa, Kingiri A., The air gasification of woody biomass from short rotation forests short rotation forests, PhD thesis, Massey University, Раlmеrstоn Nоrth, New Zealand, 1997.
[27] Silva, J.N.d., Tar Formation in Corncob Gasification, PhD thesis, Purdue University, West Lafayette, Indiana, USA. 1984.
[28] Elliott, M.A., G.J. Nebel, F.G. Rounds, The Composition of Exhaust Gases from Diesel, Gaso-line and Propane Powered Motor Coaches, Journal of the Air Pollution Control Association, 5(1955), 2, p. 103-108.
[29] GE Jenbacher. Jenbacher gas engines - Jenbacher Type JMS 208 GS-B.L.
[30] Francois, J., et al., Detailed process modeling of a wood gasification combined heat and power plant, Biomass and Bioenergy, 51(2013), 0, p. 68-82.