Ispitivanje erozione otpornosti keramike za primenu u elektrotehnici

##plugins.themes.bootstrap3.article.main##

Milica Vlahović Sanja Martinović Zoran Stević Aleksandar Savić Tatjana Volkov Husović

Apstrakt


U ovom istraživanju, primenjene su dve nedestruktivne metode (NDT), termovizijska analiza i analiza slike, za praćenje površinskih promena- erozije uzoraka keramike na bazi mulita u uslovima kavitacije. Termovizijska analiza bila je fokusirana na određivanje profila temperaturske linije na kraju kavitacionog eksperimenta. Analiza slike je moćno sredstvo za kvatifikaciju nivoa degradacije izazvanog različitim uticajima i uslovima. Na osnovu rezultata analize slike, određen je nivo degradacije, odnosno erozije tokom testiranja, kao i broj nastalih oštećenja i njihove karakteristike (srednji prečnik i površina). Rezultati dobijeni pomoću obe metode diskutovani su sa ciljem ostvarivanja optimalne procedure kojom će se procenjivati degradacija, odnosno erozija izazvana kavitacijom.


 

##plugins.themes.bootstrap3.article.details##

Kako citirati
VLAHOVIĆ, Milica et al. Ispitivanje erozione otpornosti keramike za primenu u elektrotehnici. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 7, n. 1, p. 25-30, dec. 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/5923>. Datum pristupa: 28 mar. 2020
Sekcija
Plenarna predavanja

Reference

[1] J. Śleziona, J. Wieczorek, M. Dyzia, Mechanical properties of silver matrix composites reinforced with ceramic particles, Journal of Achievements in Materials and Manufacturing Engineering, Volume 17 (2006), issue 1–2, pp. 165–168.
[2] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite– A review, Journal of the European Ceramic Society, Volume 28 (2008), pp. 329–344.
[3] X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, Journal of the European Ceramic Society, Volume 24 (2004), pp. 1–10.
[4] K. Kokini, Y. R. Takeuchi, B. D. Choules, Surface thermal cracking of thermal barrier coatings owing to stress relaxation: zirconia vs. mullite, Surface and Coatings Technology, Volume 82 (1996), pp. 77–82.
[5] F. G. Hammit, Cavitation and multiphase flow phenomena, New York, McGraw-Hill, (1980).
[6] R. T. Knapp, J. W. Daily, F. G. Hammit, Cavitation, McGraw-Hill, New York, USA, 1970.
[7] N. Qiu, L. Wang, S. Wu, D. S. Likhachev, Research on cavitation erosion and wear resistance performance of coatings, Engineering Failure Analysis, Volume 55 (2015), pp. 208–223.
[8] U. Litzow, K. H. Z. Gahr, J. Schneider, Cavitation erosion of advanced ceramics in water, International Journal of Materials Research (formerly Zeitschrift fuer Metallkunde), Volume 97 (2006), pp. 1372–1377.
[9] D. Niebuhr, Cavitation erosion behavior of ceramics in aqueous solutions, Wear, Volume 263 (2007), pp. 295–300.
[10] S. Martinovic, M. Vlahovic, T. Boljanac, M. Dojcinovic, T. Volkov Husovic, Cavitation resistance of refractory concrete: Influence of sintering temperature, Journal of the European Ceramic Society, Volume 33 (2013), issue 1, pp. 7–14.
[11] S. Martinovic, M. Vlahovic, M. Dojcinovic, T. Volkov-Husovic, J. Majstorovic, Thermomechanical properties and cavitation resistance of a high-alumina low cement castable, International Journal of Applied Ceramic Technology, Volume 8 (2011), issue 5, pp. 1115–1124.
[12] B. K. Sreedhar, S. K. Albert, A. B. Pandit, Cavitation damage: Theory and measurements – A review, Wear, Volumes 372-373 (2017), pp. 177–196.
[13] X. P. V. Maldague, Theory and practice of infrared thermographyfor nondestructive testing.w York: Wiley; 2001.
[14] C. Meola, A new approach for estimation of defects detection with infrared thermography, Materials Letters, Volume 61 (2007), issue 3, pp. 747–750.
[15] M. Vollmer , K. P. Möllmann, Infrared Thermal Imaging: Fundamentals, Research and Applications 1st Edition, WILEY-VCH, Verlag Gmbh and co, KGaA, 2010.
[16] M. Pavlovic, M. Dojcinovic, S. Martinovic, M. Vlahovic, Z. Stevic, T.Volkov Husovic, Non destructive monitoring of cavitation erosion of cordierite based coatings, Composites Part B: Engineering, Volume 97 (2016), pp. 84–91.
[17] M. Dojčinović, T. Volkov-Husović, Cavitation damage of the medium carbon steel: Implementation of image analysis, Materials Letters, Volume 62 (2008), pp. 953–956.
[18] M. B. Posarac, M. M. Dimitrijevic Marija, T. D. Volkov Husovic , J. B. Majstorovic, B. Z. Matovic, The ultrasonic and image analysis method for non-destructive quantification of the thermal shock damage in refractory specimens, Materials and Design, Volume 30 (2009), issue 8, pp. 3338-3343.
[19] A. Prstić, Z. Aćimović Pavlović, A. Terzić, L. Pavlović, Synthesis and Characterization of New Refractory Coatings Based on Talc, Cordierite, Zircon and Mullite Fillers for Lost Foam Casting Process, Archives of Metallurgy and Materials, Volume 59 (2014), issue 1, pp. 89-95.
[20] User’s manual, FLIR Ex series, FLIR Customer Support Center, USA, 2013, http://www.flir.com
[21] User’s manual FLIR Tools/Tools+, Alpine Components, UK, 2013, https://www.alpine-components.co.uk