„Superalkalni” klasteri, proizvodnja, potencijalna primena kao materijal za skladištenje energije

##plugins.themes.bootstrap3.article.main##

Suzana Veličković Xianglei Kong

Apstrakt

Jedan od glavnih događaja prošlog veka bilo je prepoznavanje klastera kao gradivnih blokova novih materijala. „Superalkalni“ klasteri zbog svoje energije ionizacije koja je niža od alkalnih atoma, predstavljaju odlična redukciona sredstva; stoga su prepoznati kao dobri kandidati za sintezu neobično jedinjenja. „Superalkali“, igra važnu ulogu u nauci o hemiji i materijalima zbog svog potencijala da služe kao strukturne jedinice za sastavljanje novih nanostrukturisanih funkcionalnih materijala, kao što su nelinearni optički materijali, materijali za skladištenje vodonika, kao i odličan redukcioni reagens za smanjenje emisije ugljen-dioksida, azot-oksida i molekularnog azota. Jedan od načina za dobijanje klastera je korišćenje nekonvencionalnih metoda. Do danas, masena spektrometrija se pokazala ključnom metodom koja nema alternativu u oblasti proizvodnje „superalkalijskih“ klastera. Međutim, da bi se dobili ovi klasteri, potrebno je izvršiti modifikacije masenih spektrometra dostupnih na tržištu. U ovom radu će biti predstavljene mogućnosti dobijanja „superalkalnih“ klastera kombinacijom dve klasične metode masene spektrometrije, poput Knudsenove ćelije i površinske ionizacije u magnetnom masenom spektrometru. Modifikovana klasična površinska jonizacija masena spektrometrija potvrdila se kao efikasna i jeftina metoda za dobijanje ovih klastera.

##plugins.themes.bootstrap3.article.details##

Kako citirati
VELIČKOVIĆ, Suzana; KONG, Xianglei. „Superalkalni” klasteri, proizvodnja, potencijalna primena kao materijal za skladištenje energije. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 8, n. 1, p. 15-21, oct. 2020. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/6107>. Datum pristupa: 27 july 2021 doi: https://doi.org/10.24094/mkoiee.020.8.1.15.
Sekcija
Plenarna predavanja

Reference

[1] Reinhard, P.G., Suraud, E., Introduction to Clusters Dynamics, WILEY-VCH Verlag GmbH, Weinheim, 2004.
[2] Castleman, A. W., S. N. Khanna, S. N., Clusters, Superatoms, and Building Blocks of New Materials, J. Phys. Chem. C, 113 (2009), pp. 2664–2675.
[3] Gutsev G. L., Boldyrev A. I., DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens”, Chem. Phys., 56 (1981), pp. 277-283.
[4] Gutsev G. L., Boldyrev A. I., DVM Xα calculations on the electronic structure of “super-alkali” cations, Chemical Physics Letters., 92, (1982), pp. 262-266.
[5] Rehm E., Boldyrev A. I., Schleyer P. v. R., Ab initio study of superalkalis. First ioniza-tion potentials and thermodynamic stability, Inorg. Chem.,31 (1992), pp. 4834-4842.
[6] Boldyrev A. I., Wang L.-S., Beyond Classical Stoichiometry: Experiment and Theory, J. Phys. Chem. A,105 (2001), pp. 10759-10775.
[7] Wang X. B., Ding C. F., Wang L. S., Boldyrev A. I., Simons J., First experimental pho-toelectron spectra of superhalogens and their theoretical interpretations, J. Chem. Phys., 110, (1999), pp. 4763-4771.
[8] Alexandrova A. N., Boldyrev A. I., Fu Y. J., Yang X., Wang X. B., Wang L. S., Struc-ture of the NaxClx+1- (x = 1–4)clusters via ab initio genetic algorithm and photoelectron spectroscopy, J. Chem. Phys., 121, (2004), pp. 5709-5719.
[9] Kudo H., Observation of Hypervalent CLi6 by Knudsen-effusion Mass Spectrometry, Na-ture., 355, (1992), pp. 432-434.
[10] Kudo H., Wu C. H., Ihle H. R.. Mass-spectrometric study of the vaporization of Li2O(s) and thermochemistry of gaseous LiO, Li2O, Li3O, and Li2O2, J. Nucl. Mater., 78, (1978), pp. 380-389.
[11] Wu C. H., The stability of the molecules Li4O and Li5O, Chem. Phys. Lett., 139 (1987), pp. 357-359.
[12] Kudo H., Zmbov K. F., Observation of gaseous Li4P: A hypervalent molecule, Chem. Phys. Lett. 187 (1991), pp. 77-80.
[13] Kudo H., Yokoyama K., Wu C. H., The stability and structure of the hyperlithiated molecules Li3S and Li4S: An experimental and ab initio study, J. Chem. Phys., 101, (1994), pp. 4190-4197.
[14] Kudo H., Yokoyama K., The Structures and Bonding of Hiperlithated Molecules, Bull. Chem. Soc. Jpn., 69 (1996), pp. 1459-1469.
[15] Shi Y., Bian S., Ma Y., Wang Y., Ren J., Kong X., Structures and Superhalogen Prop-erties of Pt2Cln (2 ≤ n ≤ 10) Clusters, J. Phys. Chem. A, 123, (2019), pp. 187-193.
[16] Schleyer P. V. R., New Horizonts in Quantum Chemistry Lowdin P-O, Pullman B (eds). Reidel Dordreacht. 1983.
[17] Sun W.-M., Wu D., Recent Progress on the Design, Characterization, and Application of Superalkalis, Chem. Eur. J., 25, (2019), pp. 9568 – 9579.
[18] Reber A. C., Khanna S. N., Castleman A. W. J., Superatom Compounds, Clusters, and Assemblies: Ultra Alkali Motifs and Architectures, J. Am. Chem. Soc., 129, (2007), pp. 10189-10194.
[19] Claridge S. A., Castelman A.W., Khanna S. N., Murray C. B., Sen A., Weiss P. S., Cluster-Assembled Materials. ACS Nano.,3, (2009), pp. 244-255.
[20] Li Y., Wu D., Li Z. R., Compounds of superatom clusters: Preferred structures and sig-nificant nonlinear optical properties of the BLi6-X (X = F, LiF2, BeF3, BF4) motifs, Inorg. Chem., 47 (2008), pp. 9773-9778. [21] Paduani C., Magnetic Hyperalkali Species of Gd-Based Clusters, J. Phys. Chem. A, 122 (2018), pp. 5037–5042.
[22] Zhang X., Wang Y., Wang H., Lim A., Gantefoer G., K. Bowen H., Reveles J. U., Khanna S. N., On the Existence of Designer Magnetic Superatoms, J.Am. Chem. Soc., 135, (2013), pp. 4856−4861.
[23] Park H., Meloni G., Reduction of carbon dioxide with a superalkali, Dalton Trans.,46, (2017), pp.11942–11949.
[24] Srivastava A. K., Reduction of Nitrogen Oxides (NOx) by Superalkalis, Chemical Phys-ics Letters, 695 (2018) pp. 205-210.
[25] Park H., Meloni G., Activation of Dinitrogen with a Superalkali Species, Li3F2, Chem-PhysChem., 19, (2018), pp. 256 – 260.
[26] Hansen J., Johnson D., Lacis A., Lebedeff S., Lee P., Russell G., Climate Impact of Increasing Atmospheric Carbon Dioxide, Science, 213, (1981) pp. 957–966.
[27] Mirzaei S., Shamiri A., Aroua M. K., Simulation of Aqueous Blend of Monoethanola-mine and Glycerol for Carbon Dioxide Capture from Flue Gas, Energy Fuels, 30, (2016), pp. 9540–9553.
[28] McDonald T. M., Lee W. R., Mason J. A., Wiers B. M., Hong C. S., Long J. R., Cap-ture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc), J. Am. Chem. Soc.,134, (2012), pp. 7056–7065.
[29] Plaza M. G., Garcia S., Rubiera F., Pis J. J., Pevida C., Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies, Chem. Eng. J.,163, (2010), pp. 41–47.
[30] Czapla M., Skurski P., Oxidizing CO2 with superhalogens, Phys. Chem. Chem. Phys., 19, (2017), pp. 5435–5440. [31] Omidvarborna H., Kumar A., Kim D. S., NOx emissions from low-temperature com-bustion of biodiesel made of various feedstocks and blends, Fuel Process. Technol., 140, (2015) pp. 113-118.
[32] NOx How Nitrogen Oxides Affect The Way We Live And Breathe, Available online at: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P10006ZO.txt (Retrieved 20-12-2017).
[33] Shaver M. P., Fryzuk M. D., Activation of Molecular Nitrogen: Coordination, Cleavage and Functionalization of N2 Mediated By Metal Complexes , Adv. Synth. Catal., 345, (2003), pp. 1061–1076.
[34] Howard J. B., Rees D. C., Structural Basis of Biological Nitrogen Fixation, Chem. Rev., 96, (1996), pp. 2965–2982.
[35] . Cao B., A. Starace K., Judd O. H., Bhattacharyya I., Jarrold M. F., Lopez J. M., Aguado A., Activation of Dinitrogen by Solid and Liquid Aluminum Nanoclusters: A Combined Experimental and Theoretical Study, J. Am. Chem. Soc., 132, (2010), pp. 12906–12918.
[36] Roy D., Vazquez A. N., Schleyer P.v. R., Modeling Dinitrogen Activation by Lithium: A Mechanistic Investigation of the Cleavage of N2 by Stepwise Insertion into Small Lithi-um Clusters, J. Am. Chem. Soc., 131, (2009), pp. 13045–13053. [37] Wang K., Liu Z., Wang X., Cui X., Enhancement of hydrogen binding affinity with low ionization energy Li2F coating on C60 to improve hydrogen storage capacity, Int. J. Hydro-gen Energy, 39, (2014), pp. 15639–15645. [38] Yokoyama K., Haketa N., Hasimoto M., Furukawa K., Tanaka H., Kudo H., Produc-tion of hyperlithiated Li2F by a laser ablation of LiF–Li3N mixture, Chem.Phys.Lett., 320, (2000), pp. 645-650.
[39] Veličković S., Đorđević V., Cvetićanin J., Đustebek J., Veljković., Nešković O., Ioni-zation energies of LinX (n = 2,3; X = Cl, Br, I) molecules, Rapid Commun. Mass Spec-trom.,20, (2006), pp. 3151-3153.
[40] Djustebek J., Veličković S., Jerosimić S., Veljković., Mass spectrometric study of the structures and ionization potential of LinI (n=2, 4, 6) clusters, J. Anal. Atом. Spectrom, 26, (2011), pp. 1641-1647.
[41] Veličković S., Djustebek J., Veljković F., Radak B., Veljković M., Formation and ion-ization energies of small chlorine-doped lithium clusters by thermal ionization mass spec-trometry, Rapid Commun. Mass Spectrom.,26, (2012), pp. 443-448.
[42] Veličković S., Djustebek J., Veljković., Veljković M., Formation of positive cluster ions LinBr (n = 2 – 7) and ionization energies studied by thermal ionization mass spectrom-etry, J. Mass Spectrom., 47, (2012), pp. 627-631.
[43] Veljković F., Djustebek J., Veljković M., Veličković S., Perić-Grujić A., Production and ionization energies of KnF (n=2–6) clusters by thermal ionization mass spectrometry, Rapid Commun. Mass Spectrom., 26, (2012), pp. 1-6.
[44] Veljković F., Djustebek., Veljković M., Perić-Grujić A., Veličković S., Study of small chlorine-doped potassium clusters by thermal ionization mass spectrometry, J. Mass Spec-trom., 47, (2012), pp. 1495-1499.
[45] Milivanović M., Veličković S., Veljković F., Jerosimić S., Structure and stability of small lithium-chloride LinClm(0,1+) (n < m, n = 1 –6, m = 1 – 3) clusters, Physical Chemistry Chemical Physics, 19, (2017), pp. 30481-30497.
[46] Milovanović B., Milovanović M., Veličković S., Veljković F., Perić-Grujić A., Jero-simić S., Theoretical and experimental investigation of geometry and stability of small po-tassium-iodide KnI (n = 2 – 6) clusters, Int. J. Quantum Chem.,119, (2019), pp. 26009-26026.
[47] Mitić M., Milovanović M., Veljković F., Perić-Grujić A., Veličković S., Jerosimić S., Theoretical and experimental study of small potassium-bromideKnBr(0,1+) (n =2-6) and KnBrn-1(0,1+) (n = 3 - 5) clusters, Journal of Alloys and Compounds, 835, (2020), pp. 155301- 155301.