Poboljšanje svojstava betona dodatkom letećeg pepela iz termoelektrane za primenu u geotermalnim sistemima

##plugins.themes.bootstrap3.article.main##

Milica Vlahović Aleksandar Savić Sanja Martinović Nataša Đorđević Zoran Stević Tatjana Volkov Husović

Apstrakt

Električnu energiju u Srbiji pretežno obezbeđuju termoelektrane. Svih jedanaest termoelektrana u Srbiji koriste ugalj, uglavnom lignit u procesu proizvodnje električne energije, čime se godišnje generiše oko 6 miliona tona letećeg pepela. Procenjena količina letećeg pepela iz termoelektrana akumulirana na deponijama u Srbiji prelazi 200 miliona tona. S druge strane, poslednjih decenija poštovanje principa ekološki održivog razvoja nametnuto je industrijama, a jedna od njih je i građevinska. Zahvaljujući prisustvu amorfnog SiO2 i Al2O3, pepeo kao pucolanski materijal pogodan je za proizvodnju betona i maltera. Zbog toga se pravilnom upotrebom letećeg pepela mogu očekivati višestruki pozitivni efekti- smanjenje deponija i poboljšanje svojstava betona. Ideja ovog istraživanja je analiziranje mogućnosti recikliranja letećeg pepela iz termoelektrane tako što će delimično zameniti uobičajeni mineralni punioc- krečnjak u proizvodnji samozbijajućeg betona (SCC). Upoređena su svojstva konvencionalnog SCC sa krečnjakom i kompozicija sa različitim sadržajem pepela. S obzirom da je u slučaju dodatka letećeg pepela potrebno da budu zadovoljeni zahtevi za SCC, kao i da svojstva betona ostanu ista ili poboljšana, ova studija je pokazala da se sve dizajnirane smeše mogu koristiti za konstrukcijske primene.

##plugins.themes.bootstrap3.article.details##

Kako citirati
VLAHOVIĆ, Milica et al. Poboljšanje svojstava betona dodatkom letećeg pepela iz termoelektrane za primenu u geotermalnim sistemima. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 8, n. 1, p. 77-86, oct. 2020. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/6121>. Datum pristupa: 30 july 2021 doi: https://doi.org/10.24094/mkoiee.020.8.1.77.
Sekcija
Energetski izvori i skladištenje energije

Reference

[1] Jevtić, D., Zakić, D., Savić, A., Radević, A., The influence of fly ash on basic properties of mortar and concrete, Proceedings Scientific conference Planning, design, construction and building renewal, Novi Sad, Serbia, 2012.
[2] Jevtić D., Markićević, J., Savić, A., Fly Ash Influence on Certain Properties of Concrete Com-posites, Proceedings 6th International Conference Science and Higher Education in Function of Sustainable Development, Užice, Serbia, 2013.
[3] Jevtić, D., Mitrović, A., Savić, A., Experimental investigation of fly ash content influence on cement mortars properties, Proceedings 2nd International Symposium on Environmental and Material Flow Management, Zenica, Bosnia and Hercegovina, 2012.
[4] Okamura, H., Self-compacting high-performance concrete, Concrete International 19 (1997), 7, pp. 50-54.
[5] Wesche, K., Fly Ash in Concrete: Properties and performance (Rilem Report 7), Report of Technical Committee 67-FAB Use of Fly Ash in Building, Taylor & Francis e-Library, 2005
[6] Jevtić, D., Savić, A., Radević, A., Fly ash influence on concrete composites - Contribution to sustainable construction, Proceedings 15th YuCorr, Tara, 2013.
[7] Jevtić, D., Zakić, D., Savić, A., Cementitious Composites Made With Fly Ash - A Contribution To The Sustainable Civil Engineering, Proceedings 14th International Conference Research and Development in Mechanical Industry, Topola, Serbia, 2014.
[8] Jevtić, D., Zakić, D., Savić, A., Radević, A., Properties modeling of cement composites made with the use of fly ash, Book of abstracts III International Congress Engineering, Environment and Materials in Processing Industry, Jahorina, Bosnia and Herzegovina, 2013.
[9] Jevtić, D., Zakić, D., Savić, A., Radević, A., Properties modeling of cement composites of fly ash, Materials Protection, LV, (2014), pp. 39-44.
[10] SRPS EN 12350-6:2010 Testing fresh concrete - Part 6: Density.
[11] SRPS EN 12350-7:2010 Testing fresh concrete - Part 7: Air content - Pressure methods.
[12] SRPS EN 206-1:2011 Concrete - Part 1: Specification performance, production and con-formity.
[13] SRPS EN 12350-10:2012 Testing fresh concrete - Part 10: Self-compacting concrete - L box test.
[14] SRPS EN 12350-11:2012; Testing fresh concrete - Part 11: Self-compacting concrete - Sieve segregation test.
[15] SRPS EN 12390-7:2010 Testing hardened concrete – Part 7: Density of hardened concrete
[16] SRPS EN 12390-3:2010 Testing hardened concrete - Part 3: Compressive strength of test specimens.
[17] SRPS ISO 4013:2000 Concrete - Determination of flexural strength of test specimens
[18] ASTM C469/ C469M 10: Standard Test Method for Static Modulus of Elasticity and Pois-son's Ratio of Concrete in Compression, (2005).
[19] SRPS U.M1.015:1998 Concrete - Hardened concrete - Determination of the depth of pene-tration of water under pressure.
[20] SRPS U.M1.055:1984 Concrete - Method of test for resistance of concrete against freezing
[21] Assie, S., Escadeillas, G., Marchese, G., Waller, V., 2006. Durability properties of low-resistance self compacting concrete, Magazine of Concrete Research 58 (2006), 1, pp. 1-7.
[22] Muravljov, M., Osnovi teorije i tehnologije betona, Građevinska knjiga, Beograd, 2011.
[23] ASTM C 618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, (2003).