Identifikacija problema smanjenja efikasnosti u radu distribuiranih pv sistema u pamet-nim sredinama

##plugins.themes.bootstrap3.article.main##

Ilija Radovanović Ivan Popović

Apstrakt

U ovom radu su predstavljene metode identifikacije problema nastalih pri smanjenoj efikasnosti distribuiranih PV sistema u pamentnim sredinama. Prikazani su detalji sistema za identifikaciju, tipovi grešaka koji se mogu detektovati i identifikovati, kao i implementacija mikroservisa i specificnosti korišćene FOG arhitekture.

##plugins.themes.bootstrap3.article.details##

Kako citirati
RADOVANOVIĆ, Ilija; POPOVIĆ, Ivan. Identifikacija problema smanjenja efikasnosti u radu distribuiranih pv sistema u pamet-nim sredinama. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 9, n. 1, july 2021. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/6632>. Datum pristupa: 29 nov. 2022
Sekcija
Aplikacije i usluge

Reference

[1] Future of solar photovoltaics - Deployment, investment, technology, grid integration and socio-economic aspects, The International Renewable Energy Agency (IRENA), 2019.
[2] I. Popovic, I. Radovanovic, Methodology for detection of photovoltaic systems underperformance op-eration based on the correlation of irradiance estimates of neighbouring systems, J. Renew. Sustain. Energy, 10 (5) (2018), p. 053701.
[3] Radovanovic, I.; Popovic, I. Identification of Degrading Effects in the Operation of Neighboring Pho-tovoltaic Systems in Urban Environments. Electronics 2021, 10, 762. https://doi.org/10.3390/electronics10070762 (2021).
[4] Jonathan Leloux, Luis Narvarte, Adrien Desportes, David Trebosc. (2020) Performance to Peers (P2P): A benchmark approach to fault detections applied to photovoltaic system fleets. Solar Energy 202, 522-539.
[5] M. Dhimish, V. Holmes, M. Dales Parallel fault detection algorithm for grid-connected photovoltaic plants Renew. Energy, 113 (2017), pp. 94-111, 10.1016/j.renene.2017.05.084
[6] S. Gallardo-Saavedra, L. Hernández-Callejo, O. Duque-Pérez, Quantitative failure rates and modes analysis in photovoltaic plants, Energy, 183 (2019), pp. 825-836, 10.1016/j.energy.2019.06.185 ISSN 0360-5442
[7] A. Livera, M. Theristis, G. Makrides, G.E. Georghiou, Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems Renew. Energy, 133 (2019), pp. 126-143, 10.1016/j.renene.2018.09.101
[8] Daliento, S., Chouder, A., Guerriero, P., 2017. Monitoring, diagnosis, and power forecasting for pho-tovoltaic fields: a review. Int. J. Photoenergy 2017, 1–13.
[9] Golnas, A., Bryan, J., Wimbrow, R., Hansen, C., Voss, S., 2011. Performance assessment without pyranometers: predicting energy output based on historical correlation. In: Photovoltaic Specialists Conference (PVSC), 2011 37th, 19-24 June 2011. IEEE, pp. 002006–002010. doi: 10.1109/PVSC.2011.6186347
[10] B. Elsinga, W.G.J.H.M. Van SarkInter-system time lag due to clouds in an urban PV ensemble 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO (2014), pp. 0754-0758, 10.1109/PVSC.2014.6925029
[11] N.A. Engerer, F.P. MillsKPV: A clear-sky index for photovoltaics Sol. Energy, 105 (2014), pp. 679-693, 10.1016/j.solener.2014.04.019
[12] J. Leloux, L. Narvarte, A. Luna, A. Desportes, Automatic fault detection on BIPV systems without solar irradiation data 29th European Photovoltaic Solar Energy Conference and Exhibition (2014).
[13] Future of solar photovoltaics - Deployment, investment, technology, grid integration and socio-economic aspects, The International Renewable Energy Agency (IRENA), 2019.
[14] Koch, S.; Weber, T.; Sobottka, C.; Fladung, A.; Clemens, P.; Berghold, J. Outdoor electrolumines-cence imaging of crystalline photovoltaic modules: Comparative study between manual ground-level inspections and drone-based aerial surveys. In Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, 20–24 June 2016. Electronics 2021, 10, 762 21 of 21.
[15] Kaplani, E. Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR Thermography and Digital Image Processing. Int. J. Photoenergy 2012, 2012, 1–11.
[16] R. Mahalakshmi, M. Karuppasamypandiyan, A. Bhuvanesh, and R. J. Ganesh, “Classification and Detection of Faults in Grid Connected Photovoltaic System,” Int. J. Sci. Eng. Res., vol. 7, no. 4, pp. 149–154, 2016.
[17] M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,” Renew. Sustain. Energy Rev., vol. 59, pp. 1307–1316, 2016.
[18] I. Radovanovic, I. Popovic and D. Drajic, Multi channel sensor measurements in fog computing architecture, Zooming Innovation in Consumer Electronics International Conference (ZINC), Novi Sad, 2017, 9-12.
[19] Colomer, J., Brufau, J., Miribel, P., Saiz-Vela, A., Puig, M., & Samitier, J., Novel autonomous low power VLSI system powered by ambient mechanical vibrations and solar cells for portable applications in a 0.13 μ technology, In Power electronics specialists conference, (2007), 2786–2791.
[20] OpenFog Reference Architecture for Fog Computing, OpenFog Consortium, 02/2017.
[21] MKOIEE2018PM I. Radovanović, R. Djurić: Power Management Of The Reconfigurable Photovoltaic Energy Systems, VI MKOIEE Conference, Beograd, October 2018.