Semi-kvantitativna analiza za procenu održive proizvodnje zelenog vodonika gasifikaci-jom biomase

##plugins.themes.bootstrap3.article.main##

Filip Veljković Bojan Janković Nebojša Manić Miloš Radojević Milovan Stojiljković Ivana Stajčić Milica Ćurčić Suzana Veličković

Apstrakt

Jedan od ciljeva koje je čovečanstvo postavilo do 2050. godine je dekarbonizacija u energetskom sektoru. Iz tog razloga upotreba vodonika kao alternativnog goriva izgleda kao moguće rešenje. Međutim, konvencionalni proces proizvodnje vodonika (elektroliza) sada indirektno čini više od 2% ukupne globalne emisije CO2. Jedan od scenarija za dostizanje postavljenih ciljeva uključuje dekarbonizaciju proizvodnje vodonika, što rezultira zelenim vodonikom. Jedan od načina za proizvodnju zelenog vodonika je moguć putem gasifikacije lignoceluloznih materijala (biomasa kao sirovina) u sintetički gas. Međutim, različiti parametri sirovine utiču na proces termohemijske konverzije, odnosno prinos i sastav sintetičkog gasa. Ovaj rad prezentuje novu semi-kvantitativnu analizu eksperimentalnih podataka dobijenih fundamentalnim eksperimne-talnim tehnikama, termogravimetrijom i masenom spektrometrijom. Prema predloženoj metodologiji na laboratorijskom nivou moguće je proceniti kvalitet sirovine za identifikaciju prinosa i sastava sintetičkog gasa, sa posebnom pažnjom na sadržaj vodonika u sintetičkom gasu. Predstavljeni su eksperimentalni rezultati za dva uzorka biomase i na osnovu izvršene semi-kvantitativne analize procenjena je mogućnostkorišćenja razmatranih sirovina za proizvodnju zelenog vodonika. Takođe je izvršena detaljna diskusija dobijenih rezultata kao i prikazana poređenja sa podacima iz lite-rature.)

##plugins.themes.bootstrap3.article.details##

Kako citirati
VELJKOVIĆ, Filip et al. Semi-kvantitativna analiza za procenu održive proizvodnje zelenog vodonika gasifikaci-jom biomase. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 9, n. 1, aug. 2021. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/6647>. Datum pristupa: 23 jan. 2022
Sekcija
Poster sesija

Reference

[1] Papadis, E., Tsatsaronis, G., Challenges in the decarbonization of the energy sector, Energy, 205, (2020), 118025.
[2] Zhang, C., Greenblatt, J. B., Wei, M., Eichman, J., Saxena, S., Muratori, M., Guerra, O. J., Flexi-ble grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions, Applied Energy, 278, (2020), 115651.
[3] Kazi, M. K., Eljack, F., El-Halwagi, M. M., Haouari, M., Green hydrogen for industrial sector de-carbonization: Costs and impacts on hydrogen economy in Qatar, Computers & Chemical Engineering, 145, (2021), 107144.
[4] García, C. A., Betancourt, R., Cardona, C. A., Stand-alone and biorefinery pathways to produce hy-drogen through gasification and dark fermentation using Pinus Patula, Journal of environmental man-agement, 203, (2017), pp. 695–703.
[5] Babacan, O., De Causmaecker, S., Gambhir, A., Fajardy, M., Rutherford, A. W., Fantuzzi, A., Nelson, J., Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage, Na-ture Energy, 5, (2020), 9, pp. 720–728.
[6] De Jong, W., Sustainable hydrogen production by thermochemical biomass processing. In: Hydrogen Fuel. CRC Press, (2008), 197–238.
[7] Molino, A., Larocca, V., Chianese, S., Musmarra, D., Biofuels production by biomass gasification: A review, Energies, 11, (2018), 4, 811.
[8] Dincer, I., Acar, C, Review and evaluation of hydrogen production methods for better sustainability, International journal of hydrogen energy, 40, (2015), 34, pp. 11094–11111.
[9] Radojević, M., Janković, B., Stojiljković, D., Jovanović, V., Čeković, I., Manić, N., Improved TGA-MS measurements for evolved gas analysis (EGA) during pyrolysis process of various biomass feed-stocks. Syngas energy balance determination, Thermochim. Acta, 699, (2021), 178912.
[10] Radojević, M., Janković, B., Jovanović, V., Stojiljković, D., Manić, N., Comparative pyrolysis kinet-ics of various biomasses based on model-free and DAEM approaches improved with numerical optimi-zation procedure, PLOS ONE, 13, (2018), e0206657.
[11] Bassilakis, R., Carangelo, R. M., Wójtowicz, M. A., TG-FTIR analysis of biomass pyrolysis, Fuel, 80, (2001), 12, pp. 1765–1786.
[12] Sfakiotakis, S., Vamvuka, D., Study of co-pyrolysis of olive kernel with waste biomass using TGA/DTG/MS, Thermochimica Acta, 670, (2018), pp. 44–54.
[13] Fang, P., Gong, Z., Wang, Z., Wang, Z., Meng, F., Study on combustion and emission characteristics of micro-algae and its extraction residue with TG-MS, Renew. Energy, 140, (2019), pp. 884-894.
[14] Jae, J., Tompsett, G. A., Lin, Y.-C., Carlson, T. R., Shen, J., Zhang, T., Yang, B., Wyman, C. E., Conner, W. C., Huber, G. W., Depolymerization of lignocellulosic biomass to fuel precursors: max-imizing carbon efficiency by combining hydrolysis with pyrolysis, Energy & Environmental Science, 3, (2010), 3, pp. 358–365.
[15] Leng, E., Costa, M., Peng, Y., Zhang, Y., Gong, X., Zheng, A., Huang, Y., Xu, M., Role of different chain end types in pyrolysis of glucose-based anhydro-sugars and oligosaccharides, Fuel, 234, (2018), pp. 738–745.
[16] Zhong, M., Zhang, Z., Zhou, Q., Yue, J., Gao, S., Xu, G., Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: Product distribution and pyrolysis gas, Journal of Analyt-ical and Applied Pyrolysis, 97, (2012), pp. 123–129.
[17] Sánchez, N. E., Callejas, A., Millera, Á., Bilbao, R., Alzueta, M. U., Influence of the Oxygen Pres-ence on Polycyclic Aromatic Hydrocarbon (PAH) Formation from Acetylene Pyrolysis under Sooting Conditions, Energy & Fuels, 27, (2013), 11, pp. 7081–7088.
[18] Zhu, J., Yang, Y., Yang, L., Zhu, Y., High quality syngas produced from the co-pyrolysis of wet sew-age sludge with sawdust, Int. J. Hydrog. Energy, 43. (2018), 11, pp. 5463–5472.
[19] M. Hu, L. Gao, Z. Chen, C. Ma, Y. Zhou, J. Chen, S. Ma, M. Laghari, B. Xiao, B. Zhang, D. Guo, Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust, Energ. Convers. Manage, 111 ,(2016), pp. 409–416.
[20] J. Zhu, L. Zhu, D. Guo, Y. Chen, X. Wang, Y. Zhu, Co-pyrolysis of petrochemical sludge and saw-dust for syngas production by TG-MS and fixed bed reactor, International Journal of Hydrogen Energy, 45, (2020), 55, pp. 30232–30243.
[21] Rasmussen, N. B. K., Aryal, N., Syngas production using straw pellet gasification in fluidized bed allothermal reactor under different temperature conditions, Fuel, 263, (2020), 116706.