Recikliranje metala iz obnovljivih izvora energije u legure koje se koriste u zelenim energijama

##plugins.themes.bootstrap3.article.main##

Stevan P. Dimitrijević

Apstrakt

Reciklaža specifičnog elektronskog otpada iz obnovljivih izvora energije pruža mogućnost da se on integriše sa pirometalurškim proizvodnim procesom različitih vrsta obojenih legura. Jedna vrsta legura se koristi za lemljenje različitih vrsta materijala kao što su bakar i nerđajući čelik i često se koriste za instalacije solarnih kolektora. Ostale dobijene legure pripadaju novom tipu legura srebra otpornih na tamnjenje koje se mogu koristiti u elektronici i raznim aplikacijama obnovljivih izvora energije. Svi reciklirani metali iz procesa se koriste za kasniju ingot metalurgiju i mogu se dalje prerađivati da bi se dobila žica, lim ili drugi odgovarajući oblici (šipke, trake). Ova studija prezentuje proces reciklaže sa tehnološkim parametrima i tokovima materijala. Posebna pažnja u radu je posvećena strukturi odabranih legura. Za karakterizaciju mikrostrukture legura korišćeni su optička mikroskopija, SEM sa EDS-om i XRD metoda.

##plugins.themes.bootstrap3.article.details##

Kako citirati
DIMITRIJEVIĆ, Stevan P.. Recikliranje metala iz obnovljivih izvora energije u legure koje se koriste u zelenim energijama. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 10, n. 1, p. 35-42, nov. 2022. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/6797>. Datum pristupa: 15 oct. 2024
Sekcija
Plenarna predavanja

Reference

[1] GIELEN D., BOSHELL F., SAYGIN D., BAZILIAN M.D., WAGNER N., GORINI R., The role of renewable energy in the global energy transformation, Energy Strategy Reviews, 24, 2019, pp. 38–50.
[2] GIURCO D., DOMINISH E., FLORIN N., WATARI T., MCLELLAN B., Requirements for minerals and metals for 100% renewable scenarios. In: Achieving the Paris Climate Agreement Goals. Springer, Cham, 2019. pp. 437–457.
[3] Kalt, G., Thunshirn, P., Krausmann, F., Haberl, H., Material requirements of global electricity sector pathways to 2050 and associated greenhouse gas emissions, Journal of Cleaner Production, 358, 2022, 132014.
[4] Teseletso, L.S., Adachi T., Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model, Resources, 11, 2022, 37.
[5] HARMSEN, J.H.M., ROES, A.L., PATEL, M.K., The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios, Energy, 50, 2013, pp. 62–73.
[6] MOREAU V., REIS P.C.D., VUILLE F., Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System, Resources, 8, 2019, 29.
[7] HABIB K., WENZEL H., Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling, Journal of Cleaner Production, 84, 2014, pp. 348–359.
[8] GRANDELL L., LEHTILÄ A., KIVINEN M., KOLJONEN T., KIHLMAN S., LAURI L.S., Role of critical metals in the future markets of clean energy technologies, Renewable Energy, 95, 2016, pp. 53–62.
[9] ANGERER G., ERDMANN L., MARSCHNEIDER-W. F., SCHARP M., LÜLLMANN A., HANDKE V., MARWEDE M., Rohstoffe für Zukunftstechnologien. Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage, Stuttgart: Fraunhofer IRB Verlag, Germany, 2009.
[10] ÖHRLUND, I., Future Metal Demand from Photovoltaic Cells and Wind Turbines - Investigating the Potential Risk of Disabling a Shift to Renewable Energy Systems, STOA—Science and Technology Assessment Report; Science and Technology Options Assessment (STOA): Brussels, Belgium, 2011.
[11] DIMITRIJEVIĆ S., RAJČIĆ-VUJASINOVIĆ M., STEVIĆ Z., KAMBEROVIĆ Ž., KORAĆ M., DIMITRIJEVIĆ S.P., Metal extraction and separation processes in recycling of CIGS based thin film PV modiles, The second International Conference on renewable electrical power sources, ICREPS, Belgrade, 16.-18.2013., pp. 1–8.
[12] DE OLIVEIRA L.S.S., LIMA M.T.W.D.C., YAMANE L.H., SIMAN R.R., Silver Recovery from End-Of-Life Photovoltaic Panels, Detritus, 10, 2020, pp. 62–74.
[13] KAVLAK, G., MCNERNEY, J., JAFFE, R.L., TRANCIK, J.E., Metal production requirements for rapid photovoltaics deployment, Energy and Environmental Science, 8, 2015, pp.1651–1659.
[14] CHOI C.H., CAO J., ZHAO F., System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies, Resources, Conservation and Recycling, 114, 2016, pp. 59–71.
[15] CIACCI L., WERNER T.T., VASSURA I., PASSARINI F., Backlighting the European Indium Recycling Potentials, Journal of Industrial Ecology, 23, 2019, pp. 426–437.
[16] Ciacci L., Reck B.K., Nassar N. T., Graedel T.E., Lost by design, Environmental Science & Technology, 49, 2015, pp. 9443–9451.
[17] DIMITRIJEVIĆ S.B., MIRIĆ M., TRUJIĆ V., IVANOVIĆ A., DIMITRIJEVIĆ S.P., Recycling of Precious Metals from E-scrap, Iranian Journal of Chemical Engineering, 32, 2013, pp. 17–23.
[18] DIMITRIJEVIĆ S.B., MIRIĆ M., TRUJIĆ V., MADIĆ B., DIMITRIJEVIĆ S.P., Recovery of Precious (Au, Ag, Pd, Pt) and Other Metals by E–Scrap Processing, Bulgarian Chemical Communications, 46, 2014, pp. 417–422.
[19] DIMITRIJEVIĆ S.P., ANĐIĆ Z., KAMBEROVIĆ Ž., DIMITRIJEVIĆ S.B., VUKOVIĆ N., Recycling Of Silver Plated Brass For Production оf High Purity Cathode Copper аnd Ultrafine Silver Powder For Electric Contacts, Bulgarian Chemical Communications, 46, 2014, pp. 814–824.
[20] DIMITRIJEVIĆ S.P., DIMITRIJEVIĆ S.B., STEVIĆ Z., TRUMIĆ B., IVANOVIĆ A., Obtaining of the cadmium-free silver brazing alloys from e-scrap, The 5th International Conference on Renewable Electrical Power Sources, ICREPS 17, Belgrade, Serbia, 12.-13.10. 2017
[21] NIKULSKI J.S., RITTHOFF M., VON GRIES N., The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps. Resources, 10, 2021, 37.
[22] MIR S., VAISHAMPAYAN A., DHAWAN N., A Review on Recycling of End-of-Life Light-Emitting Diodes for Metal Recovery, JOM, 74, 2022, pp. 599–611.
[23] CANDELISE C., SPIERS J.F., GROSS R.J.K., Materials availability for thin film (TF) PV technologies development: A real concern?, Renewable and Sustainable Energy Reviews, 15, 2011, pp. 4972–4981.
[24] Redlinger M., Eggert R., Woodhouse M., Evaluating the availability of gallium, indium, and tellurium from recycled photovoltaic modules, Solar Energy Materials and Solar Cells, 138, 2015, pp. 58–71.
[25] ISHERWOOD P.J.M., Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling, Sustainability, 14, 2022, 1676.
[26] AUGUSTINE B., REMES K., LORITE G.S., VARGHESE J., FABRITIUS T., Recycling perovskite solar cells through inexpensive quality recovery and reuse of patterned indium tin oxide and substrates from expired devices by single solvent treatment, Solar Energy Materials and Solar Cells, 194, 2019, pp. 74–82.
[27] LI X., MA B., HU D., ZHAO Q., CHEN Y.. WANG C., Efficient separation and purification of indium and gallium in spent Copper indium gallium diselenide (CIGS), Journal of Cleaner Production, 339, 2022, 130658.
[28] Liu F.-W. et al., High-yield recycling and recovery of copper, indium, and gallium from waste copper indium gallium selenide thin-film solar panels, Solar Energy Materials and Solar Cells, 241,2022, 111691.
[29] RANITOVIĆ M., DJOKIĆ J., KORAĆ M., GAJIĆ N., DIMITRIJEVIĆ S.P., Recyclability of technology metals from e-waste: case study of In and Ga recovery from magnetic fraction, Metallurgical and Materials Engineering, 25, 2019, pp. 183–194.
[30] DIMITRIJEVIĆ S.B., DIMITRIJEVIĆ S.P., Chapter 17: E-scrap processing: theory and practice, Advanced Ceramics and Applications, edited by Gadow R. and Mitic V.V., Berlin, Boston: De Gruyter, 2021, pp. 237–262.
[31] KAMBEROVIĆ Ž., RANITOVIĆ M., KORAĆ M., ANDJIĆ Z., GAJIĆ N., DJOKIĆ J., JEVTIĆ S., Hydrometallurgical Process for Selective Metals Recovery from Waste-Printed Circuit Boards, Metals, 8, 2018, 441.
[32] DIMITRIJEVIĆ S. P., MANASIJEVIĆ D., KAMBEROVIĆ Ž., DIMITRIJEVIĆ S.B., MITRIĆ M., GORGIEVSKI M., Mladenović S., Experimental Investigation of Microstructure and Phase Transitions in Ag-Cu-Zn Brazing Alloys, Journal of Materials Engineering and Performance, 27, 2018, pp. 1570–1579.
[33] DIMITRIJEVIĆ S.P., VURDELJA B., DIMITRIJEVIĆ S.B., VELJKOVIC F., KAMBEROVIĆ Ž., VELICKOVIĆ S., Complementary methods for characterization of the corrosion products on the surface of Ag60Cu26Zn14 and Ag58.5Cu31.5Pd10 brazing alloys, Corrosion Reviews, 38, 2020, pp. 111–125.
[34] YE D., XIONG W., ZHANG, X., QU J., YAO Z., Microstructure and shear strength of the brazed joint of Ti(C,N)-based cermet to steel, Rare Metals, 29, 2010, pp. 72–77.