Obnovljivi izvori energije u bežičnim senzorskim mrežama

##plugins.themes.bootstrap3.article.main##

Miodrag Malović

Apstrakt

Razvoj jeftinih mikroelektronskih komponenti niske potrošnje uslovio je ekspanziju bežičnih tehnologija u zadnje dve dekade. Jedna od glavnih mana svih bežičnih uređaja, uključujući senzorske, jesu ograničeni energetski resursi. U ovom radu opisani su uobičajeni mehanizmi koji se koriste u „energy harvesting“ i „energy scavenging“ procedurama, kojima se snaga iz okoline koristi za dopunjavanje energetskih rezervi u bežičnim senzorskim mrežama. Oni uključuju konverziju energije elektromagnetskih talasa, vibracija i toplote.

##plugins.themes.bootstrap3.article.details##

Kako citirati
MALOVIĆ, Miodrag. Obnovljivi izvori energije u bežičnim senzorskim mrežama. Zbornik Međunarodne konferencije o obnovljivim izvorima električne energije – MKOIEE, [S.l.], v. 10, n. 1, p. 91-104, nov. 2022. Dostupno na: <https://izdanja.smeits.rs/index.php/mkoiee/article/view/6804>. Datum pristupa: 26 feb. 2024
Sekcija
Energetski izvori i skladištenje energije

Reference

[1] Libelium - Waspmote, https://www.libelium.com/iot-products/waspmote/
[2] Narayanan, R. P., T. V. Sarath, V. V. Vineeth, Survey on motes used in wireless sensor networks: Performance & parametric analysis, Wireless Sensor Network, Vol. 8 (2016), 4, pp. 51–60.
[3] Cheema, H., J. Watson, J. H. Delcamp, Integrating GaAs, Si, and Dye-Sensitized Solar Cells in Multijunction Devices and Probing Harsh Condition Behavior, ACS Applied Electronic Materials, Vol. 3 (2021), 1, pp. 316–324.
[4] R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Micropower energy harvesting, Solid-State Electronics, Vol. 53 (2009), 7, pp. 684–693.
[5] Taneja, J., J. Jeong, D. Culler, Design, modeling, and capacity planning for micro-solar power sensor networks, Proc. International conference on information processing in sensor networks, IEEE, St. Louis, MO, 2008.
[6] Simjee, F. I., P. H. Chou, Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes, IEEE Transactions on power electronics, Vol. 23 (2008), 3, pp. 1526–1536.
[7] Minami, M., T. Morito, H. Morikawa, T. Aoyama, Solar biscuit - A battery-less wireless sensor network system for environmental monitoring applications, Proc. 2nd international workshop on networked sensing systems, ACM, San Diego, CA, 2005.
[8] Brunelli, D., C. Moser, L. Thiele, L. Benini, Design of a solar-harvesting circuit for batteryless embedded systems, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 56 (2009), 11, pp. 2519–2528.
[9] Jiang, X., J. Polastre, D. Culler, Perpetual environmentally powered sensor networks, Proc. 4th International Symposium on Information Processing in Sensor Networks, IEEE, Los Angeles, CA, 2005.
[10] Chen, Y., Q. Wang, J. Gupchup, A. Terzis, Tempo: An energy harvesting mote resilient to power outages, Proc. 35th Conference on Local Computer Networks, IEEE, Denver, CO, 2010.
[11] Hande, A., T. Polk, W. Walker, D. Bhatia, Indoor solar energy harvesting for sensor network router nodes, Microprocessors and Microsystems, Vol. 31 (2007), 6, pp. 420–432.
[12] Zhi, C., Z. Li, B. Wei, Recent progress in stabilizing perovskite solar cells through two-dimensional modification, APL Materials, Vol. 9 (2021), 7, 070702.
[13] Cheng, Y., L. Ding, Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications, SusMat, Vol. 1 (2021), 3, pp. 324–344.
[14] Reynaud, C. A., D. Duché, J. J. Simon, E. Sanchez-Adaime, O. Margeat, J. Ackermann, V. Jangid, C. Lebouin, D. Brunel, F. Dumur, D. Gigmes, Rectifying antennas for energy harvesting from the microwaves to visible light: A review, Progress in Quantum Electronics, Vol. 72 (2020), 100265.
[15] Nishimoto, H., Y. Kawahara, T. Asami, Prototype implementation of ambient RF energy harvesting wireless sensor networks, Proc. IEEE Sensors 2010 Conference, IEEE, Waikoloa, HI, 2010.
[16] Thangarajan, A. S., T. D. Nguyen, M. Liu, S. Michiels, F. Yang, K. L. Man, J. Ma, W. Joosen, D. Hughes, Static: Low Frequency Energy Harvesting and Power Transfer for the Internet of Things, Frontiers in Signal Processing, Vol. 1 (2022), pp. 1–13.
[17] Assimonis, S. D., S. N. Daskalakis, A. Bletsas, Sensitive and efficient RF harvesting supply for batteryless backscatter sensor networks, IEEE Transactions on Microwave Theory and Techniques, Vol. 64 (2016), 4, pp. 1327–1338.
[18] Loubet G., A. Takacs, D. Dragomirescu, Implementation of a battery-free wireless sensor for cyber-physical systems dedicated to structural health monitoring applications, IEEE Access, Vol. 7 (2019), pp. 24679–24690.
[19] Sarker, M. R. , M. H. M. Saad, J. L. Olazagoitia, J. Vinolas, Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications. Electronics, Vol. 10 (2021), 9, 1108.
[20] Mouapi, A., Piezoelectric micro generator design and characterization for self-supplying industrial wireless sensor node, Memories - Materials, Devices, Circuits and Systems, Vol. 1 (2022), 100002.
[21] Matova, S. P., R. Elfrink, R. J. M. Vullers, R. Van Schaijk, Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator, Journal of Micromechanics and Microengineering, Vol. 21 (2011), 10, 104001.
[22] Balpande, S. S., R. S. Pande, R. M. Patrikar, Design and low cost fabrication of green vibration energy harvester, Sensors and Actuators A: Physical, Vol. 251 (2016), pp.134–141.
[23] Hwang, G. T., V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, C. K. Jeong, K. I. Park, J. J. Choi, Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester, Advanced Energy Materials, Vol. 6 (2016), 13, 1600237.
[24] Reilly, E. K., F. Burghardt, R. Fain, P. Wright, Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester, Smart materials and structures, Vol. 20 (2011), 12, 125006.
[25] Lee, J., B. Choi, Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires, Energy conversion and management, Vol. 78 (2014), pp. 32–38.
[26] Ferin, G., T. Hoang, C. Bantignies, H. Le Khanh, E. Flesch, A. Nguyen-Dinh, Powering autonomous wireless sensors with miniaturized piezoelectric based energy harvesting devices for NDT applications. Proc. International Ultrasonics Symposium, IEEE, Taipei, Taiwan, 2015.
[27] Dziadak, B., M. Kucharek, J. Starzyński, Powering the WSN Node for Monitoring Rail Car Parameters Using a Piezoelectric Energy Harvester, Energies, Vol. 15 (2022), 5, 1641.
[28] Beeby, S. P., R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha, S. Roy, A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and microengineering, Vol. 17 (2007), 7, pp. 1257–1265.
[29] Zhang, W., Y. Dong, Y. Tan, M. Zhang, X. Qian, X. Wang, Electric power self-supply module for WSN sensor node based on MEMS vibration energy harvester, Micromachines, Vol. 9 (2018), 4, 161.
[30] Orfei, F., C. B. Mezzetti, F. Cottone, Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge. Proc. IEEE Sensors, IEEE, Orlando, FL, 2016.
[31] Bakhtiar, S., F. U. Khan, W. U. Rahman, A. S. Khan, M. M. Ahmad, M. Iqbal, A Pressure-Based Electromagnetic Energy Harvester for Pipeline Monitoring Applications, Journal of Sensors, Vol. 2022, 529623.
[32] Halim, M. A., H. Cho, J. Y. Park, Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester. Energy Conversion and Management, Vol. 106 (2015), pp. 393–404.
[33] Niroomand, M., H. R. Foroughi, A rotary electromagnetic microgenerator for energy harvesting from human motions, Journal of applied research and technology, Vol. 14 (2016), 4, pp. 259–267.
[34] Liu, H., C. Hou, J. Lin, Y. Li, Q. Shi, T. Chen, L. Sun, C. Lee, A non-resonant rotational electromagnetic energy harvester for low-frequency and irregular human motion, Applied Physics Letters, Vol. 113 (2018), 20, 203901.
[35] Takhedmit, H., Z. Saddi, A. Karami, P. Basset, L. Cirio, Electrostatic vibration energy harvester with 2.4-GHz Cockcroft-Walton rectenna start-up, Comptes Rendus Physique, Vol. 18 (2017), 2, pp. 98–106.
[36] Basset, P., D. Galayko, A. M. Paracha, F. Marty, A. Dudka, T. Bourouina, A batch-fabricated and electret-free silicon electrostatic vibration energy harvester, Journal of Micromechanics and Microengineering, Vol. 19 (2009), 11, 115025.
[37] Perez, M., S. Boisseau, P. Gasnier, J. Willemin, M. Geisler, J. L. Reboud, A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications, Smart materials and structures, Vol. 25 (2016), 4, 045015.
[38] Zhang, Y., Y. Hu, X. Guo, F. Wang, Micro energy harvester with dual electrets on sandwich structure optimized by air damping control for wireless sensor network application, IEEE Access, Vol. 6 (2018), pp. 26779–26788.
[39] Gao, C., S. Gao, H. Liu, L. Jin, J. Lu, Electret length optimization of output power for double-end fixed beam out-of-plane electret-based vibration energy harvesters, Energies, Vol. 10 (2017), 8, 1122.
[40] Zhang, R., H. Olin, Material choices for triboelectric nanogenerators: a critical review, EcoMat, Vol. 2 (2020), 4, e12062.
[41] Toon, J., Harvesting Electricity: Triboelectric Generators Capture Wasted Power, https://rh.
gatech.edu/news/259571/harvesting-electricity-triboelectric-generators-capture-wasted-power
[42] Kim, W., H. J. Hwang, D. Bhatia, Y. Lee, J. M. Baik, D. Choi, Kinematic design for high performance triboelectric nanogenerators with enhanced working frequency, Nano energy, Vol. 21 (2016), 1, pp.19–25.
[43] Wu, Y., Y. Hu, Z. Huang, C. Lee, F. Wang, Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network, Sensors and Actuators A: Physical, Vol. 271 (2018), pp.364–372.
[44] Xu, M., T. Zhao, C. Wang, S. L. Zhang, Z. Li, X. Pan, Z. L. Wang, High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy, ACS nano, Vol. 13 (2019), 2, pp.1932–1939.
[45] Wang, H., Z. Fan, T. Zhao, J. Dong, J., S. Wang, S., Y. Wang, X. Xiao, C. Liu, X. Pan, Y. Zhao, M. Xu, Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety, Nano Energy, Vol. 84 (2021), 105920.
[46] Leonov, V., T. Torfs, N. Kukhar, C. Van Hoof, R. Vullers, Small-size BiTe thermopiles and a thermoelectric generator for wearable sensor nodes, Proc. 6th European Conference on Ther-moelectrics, Odessa, Ukraine, 2007.
[47] Guan, M., K. Wang, D. Xu, W. H. Liao, Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes, Energy Conversion and Management, Vol. 138 (2017), pp. 30–37.
[48] Wang, W., V. Cionca, N. Wang, M. Hayes, B. O’Flynn, C. O’Mathuna, Thermoelectric energy harvesting for building energy management wireless sensor networks, International journal of distributed sensor networks, Vol. 9 (2013), 6, 232438.
[49] Elforjani, B., Y. Xu, K. Brethee, Z. Wu, F. Gu, A. Ball, Monitoring gearbox using a wireless temperature node powered by thermal energy harvesting module, Proc. 23rd International Conference on Automation and Computing, IEEE, Huddersfield, UK, 2017.
[50] Shen, H., H. Lee, S. Han, Optimization and fabrication of a planar thermoelectric generator for a high-performance solar thermoelectric generator, Current Applied Physics, Vol. 22 (2021), pp. 6–13.
[51] Hou, L., S. Tan, Z. Zhang, N. W. Bergmann, Thermal energy harvesting WSNs node for temperature monitoring in IIoT, IEEE Access, Vol. 6 (2018), pp. 35243–35249.
[52] Cappelli, I., S. Parrino, A. Pozzebon, A. Salta, Providing Energy Self-Sufficiency to LoRaWAN Nodes by Means of Thermoelectric Generators (TEGs)-Based Energy Harvesting, Energies, Vol. 14 (2021), 21, 7322.
[53] Pandya, S., G. Velarde, L. Zhang, J. D. Wilbur, A. Smith, B. Hanrahan, C. Dames, L. W. Martin, New approach to waste-heat energy harvesting: pyroelectric energy conversion, NPG Asia Materials, Vol. 11 (2019), 1, pp. 1–5.
[54] Yang, Y., S. Wang, Y. Zhang, Z. L. Wang, Pyroelectric nanogenerators for driving wireless sensors, Nano letters, Vol. 12 (2012), 12, pp. 6408–6413.
[55] Hunter, S. R., N. V. Lavrik, P. G. Datskos, D. Clayton, Pyroelectric energy scavenging techniques for self-powered nuclear reactor wireless sensor networks, Nuclear Technology, Vol. 188 (2014), 2, pp.172–184.
[56] Gusarov, B., E. Gusarova, B. Viala, L. Gimeno, S. Boisseau, O. Cugat, E. Vandelle, B. Louison, Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy, Sensors and Actuators A: Physical, Vol. 243 (2016), pp. 175–181.
[57] Tesla, N., Thermo Magnetic Motor, US Patent No. 396121, 1889.
[58] Kishore, R. A., Thermal energy harvesting using thermomagnetic effect. In S. Wang (Ed), Low-Grade Thermal Energy Harvesting, pp. 205–224, Woodhead Publishing, 2022.
[59] Kishore, R. A., D. Singh, R. Sriramdas, A. J. Garcia, M. Sanghadasa, S. Priya, Linear thermomagnetic energy harvester for low-grade thermal energy harvesting, Journal of Applied Physics, Vol. 127 (2020), 4, 044501.
[60] Ahmim, S., M. Almanza, V. Loyau, F. Mazaleyrat, A. Pasko, F. Parrain, M. Lobue, Self-oscillation and heat management in a LaFeSi based thermomagnetic generator, Journal of Magnetism and Magnetic Materials, Vol. 540 (2021), 168428