Primena elektrofilterskog pepela modifikovanog sa getitom za uklanjanje As(v) iz vodenih rastvora

##plugins.themes.bootstrap3.article.main##

Milica Karanac Maja Đolić Zlate Veličković Željko Kamberović Vladimir Pavićević Aleksandar Marinković

Apstrakt

Cilj ovog rada je ispitivanje mogućnosti primene modifikovanog oblika elektrofilterskog pepela (eng. Fly ash, FA) sa železo(III)-hidroksidom (α–FeOOH) u obliku getita (G) za efikasno uklanjanje arsena iz otpadne vode. U okviru rada izvršena je sinteza u perforiranoj koloni i dobijen je novi adsorpcioni materijal označen kao FAG. Efikasnost adsorpcije As(V) ispitana je u laboratorijskim uslovima u šaržnom sistemu, varijacijom mase adsorbenta i temperature. Izvršena je karakterizacija FA i FAG primenom: rendgenske difrakcione analize (eng. X-Ray Difraction, XRD), metode adsorpciono/desorpcione izoterme adsorpcije gasa (eng. Brunauer–Emmett–Teller, BET) i infracrvene spektrometrije sa Furijeovom transformacijom (eng. Fourier-Transform Infrared Spectroscopy, FTIR). Maksimalni adsorpcioni kapacitet FAG adsorbenta za uklanjanje As(V), izračunat je primenom Lengmirovog modela i iznosi 32,35 mg g-1. Termodinamički parametri adsorpcije za FAG/As(V) ukazali su da je proces adsorpcije spontan i endoterman.

##plugins.themes.bootstrap3.article.details##

Kako citirati
KARANAC, Milica et al. Primena elektrofilterskog pepela modifikovanog sa getitom za uklanjanje As(v) iz vodenih rastvora. Procesna tehnika, [S.l.], v. 31, n. 1, p. 28-31, july 2019. ISSN 2217-2319. Dostupno na: <https://izdanja.smeits.rs/index.php/procteh/article/view/4887>. Datum pristupa: 20 nov. 2019 doi: https://doi.org/10.24094/ptc.019.31.1.28.
Sekcija
Inženjerska praksa

Reference

[1] Karanac, M., M. Đolić, Đ. Veljović, N. V. Rajaković-Ognjanović, Z. Veličković, V. Pavićević, A. Marinković, The removal of Zn2+, Pb2+, and As(V) ions by lime activated fly ash and valorization of the exhausted adsorbent, Waste Management, 78 (2018), pp. 366–378.
[2] Tiwari, M.K., S. Bajpai, U.K. Dewangan, R.K. Tamrakar, Suitability of leaching test methods for fly ash and slag: A review, Journal of Radiation Research and Applied Sciences 8 (2015), pp. 523–537.
[3] Karanac, M., M. Đolić, Z. Veličković, A. Kapidžić, V. Ivanovski, M. Mitrić, A. Marinković, Efficient multistep arsenate removal onto magnetite modified fly ash, Journal of Environmental Management, vol. 224 (2018), pp. 263–276.
[4] Darezereshki, E., A.K. Darban, M. Abdollahy, A. Jamshidi-Zanjani, Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: Kinetics and thermodynamic, Environmental Nanotechnology, Monitoring & Management 10 (2018), pp. 51–62.
[5] Jacobson, A.T., M. Fan, Evaluation of natural goethite on the removal of arsenate and selenite from water, Journal of Environmental Sciences, 76 (2019), pp. 133–141.
[6] Moreira, R.F.P.M., S. Vandresen, D.B. Luiz, H.J. José, G.L. Puma, Adsorption of arsenate, phosphate and humic acids onto acicular goethite nanoparticles recovered from acid mine drainage, Journal of Environmental Chemical Engineering, 5(2017), pp. 652–659.
[7] Al-Jabari, M., Kinetic models for adsorption on mineral particles comparison between Langmuir kinetics and mass transfer, Environmental Technology & Innovation 6(2016), 27–37.
[8] Siddiqui, S.I., S.A. Chaudhry, Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement, Process Safety and Environmental Protection, 111 (2017), pp. 592–626.
[9] Taleb, K., J. Markovski, Z. Veličković, J. Rusmirović, M. Rančić, V. Pavlović, A. Marinković, Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size, Arabian J. Chem, 2016. https://doi.org/10.1016/j.arabjc.2016.08.006
[10] Inglezakis, V. J., A. A. Zorpas, Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems, Desalination and Water Treatment 39 (2012), pp. 149–157.
[11] Wu, P.-Y., Y. Jia, Y.-P. Jiang, Q.-Y. Zhang, S.-S. Zhou, F. Fang, D.-Y. Peng, Enhanced arsenate removal performance of nanostructured goethite with high content of surface hydroxyl groups, Journal of Environmental Chemical Engineering, 2(2014), pp. 2312–2320.
[12] Montalvo, D., R. Vanderschueren, A. Fritzsche, R.U. Meckenstock, E. Smolders, Efficient removal of arsenate from oxic contaminated water by colloidal humic acid-coated goethite: Batch and column experiments, Journal of Cleaner Production, 189 (2018), pp. 510–518.
[13] Markovski, J.S., V. Dokic, M. Milosavljevic, M. Mitric, A.A. Peric-Grujic, A.E. Onjia, A.D., Marinkovic, Ultrasonic assisted arsenate adsorption on solvothermally synthesized calcite modified by goethite, alpha-MnO2 and goethite/alpha-MnO2, Ultrason. Sonochem. 21 (2014), pp. 790–801.
[14] Ramirez-Muñiz, K., F. Perez-Rodriguez, R. Rangel-Mendez, Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite. Journal of Molecular Liquids, 264 (2018), pp. 253–260.
[15] Moreira, R.F.P.M., S. Vandresen, D.B. Luiz, H.J. José, G.L. Puma, Adsorption of arsenate, phosphate and humic acids onto acicular goethite nanoparticles recovered from acid mine drainage, Journal of Environmental Chemical Engineering, 5 (2017), pp. 652–659.
[16] Legodi, M.A., D. de Waal, The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes and Pigments, 74 (2007), pp. 161–168.
[17] Ul Haq, E., S. Kunjalukkal Padmanabhan, A. Licciulli, Microwave synthesis of thermal insulating foams from coal derived bottom ash. Fuel Process. Technol. 130 (2015), pp. 263–267.
[18] Gao, M., Q. Ma, Lin, J.Q., Chang, H. Ma, Fabrication and adsorption properties of hybrid fly ash composites. Applied Surface Science, 396 (2017), pp. 400–411.
[19] Mollah, M.Y., M. Kesmez, D.L. Cocke, An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V. Science of the Total Environment, 325 (2004), pp. 255–262.