Hibridni hidrogelovi osetljivi na spoljne stimulanse za kontrolisano otpuštanje lokalnog anestetika
##plugins.themes.bootstrap3.article.main##
Apstrakt
Inteligentni hidrogelovi, kao što su pH osetljivi hidrogelovi na bazi poli(metakrilne kiseline) (PMAA), imaju veliku primenu u ciljanoj dostavi lekova. Međutim, slaba mehanička svojstva često ograničavaju primenu PMAA. Kako bi se prevazišlo navedeno ograničenje, nanoceluloza (NC) je prvo ekstrakovana iz drvnog otpadnog materijala, a zatim dodata u PMAA, zato što je NC biokompatibilna, netoksična i ima odlična mehanička svojstva. Zatim je dodata karboskimetil celuloza (CMC) (celulozni derivat koji se često koristi za kontrolisano otpuštanje lekova). CMC može da stabilizuje nanočestice magnetita (MN) koje su takođe dodate. MN mogu značajno da poboljšaju mehanička svojstva hidrogelova i takođe poseduju magnetna svojstva zbog čega imaju primenu za ciljano otpuštanje lekova. Ovako dobijeni materijal bi mogao da zaštiti lek, dostavi ga do mesta delovanja, kontroliše brzinu njegovog otpuštanja i na taj način omogući efikasno dejstvo leka sa smanjenim neželjenim efektima. Lokalni anestetik – lidokain hidrohlorid (LH) se često u tretmanima injektira što može imati ozbiljne neželjene efekte. Inkapsulacijom LH u hidrogelove na bazi PMAA, NC, CMC i MN (PMNC/MN-L) rešen je navedeni problem. Karakterizacija PMNC/MN-L hidrogelova je izvedena primenom FTIR i SEM spektroskopija i kompresionim testovima, a zatim je analizirano bubrenje hidrogelova i otpuštanje LH. U ovom radu predstavljen je jedinstveni način „zelene” sinteze hibridnih hidrogelova osetljivih na spoljne stimulanse unapređenih svojstava i njihove primene za kontrolisano otpuštanje lokalnog anestetika sa smanjenim neželjnim efektima.
##plugins.themes.bootstrap3.article.details##
Reference
[2] Z. Jahan, M.B.K. Niazi, M.-B. Hägg, Ø.W. Gregersen, Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure, Journal of Membrane Science 554 (2018) 275-281.
[3] J. Liu, P. Chen, D. Qin, S. Jia, C. Jia, L. Li, H. Bian, J. Wei, Z. Shao, Nanocomposites membranes from cellulose nanofibers, SiO2 and carboxymethyl cellulose with improved properties, Carbohydrate Polymers 233 (2020) 115818.
[4] S. Valizadeh, M. Naseri, S. Babaei, S.M.H. Hosseini, A. Imani, Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid, International Journal of Biological Macromolecules 134 (2019) 604-612.
[5] R. Pongsawatmanit, S. Ketjarut, P. Choosuk, P. Hanucharoenkul, Effect of carboxymethyl cellulose on properties of wheat flour-tapioca starch-based batter and fried, battered chicken product, Agriculture and Natural Resources 52(6) (2018) 565-572.
[6] S. Karagiorgis, A. Tsamis, C. Voutouri, R. Turcu, S.A. Porav, V. Socoliuc, L. Vekas, M. Louca, T. Stylianopoulos, V. Vavourakis, T. Krasia-Christoforou, Engineered magnetoactive collagen hydrogels with tunable and predictable mechanical response, Materials Science and Engineering: C 114 (2020) 111089.
[7] B. Massoumi, Z. Mozaffari, M. Jaymand, A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system, International Journal of Biological Macromolecules 117 (2018) 418-426.
[8] Y. Li, G. Huang, X. Zhang, B. Li, Y. Chen, T. Lu, T.J. Lu, F. Xu, Magnetic Hydrogels and Their Potential Biomedical Applications, Advanced Functional Materials 23(6) (2013) 660-672.
[9] M.L. Ridderikhof, N. Leenders, H. Goddijn, N.W. Schep, P. Lirk, J.C. Goslings, M.W. Hollmann, Anesthesia with topical lidocaine hydrochloride gauzes in acute traumatic wounds in triage, a pilot study, International Emergency Nursing 28 (2016) 25-28.
[10] D.L. Jones, G.J. Klein, G.M. Guiraudon, R. Yee, J.E. Brown, A.D. Sharma, Effects of lidocaine and verapamil on defibrillation in humans, Journal of Electrocardiology 24(4) (1991) 299-305.
[11] B. Ege, M. Calisir, Y. Al-Haideri, M. Ege, M. Gungormus, Comparison of Local Anesthetic Efficiency of Tramadol Hydrochloride and Lidocaine Hydrochloride, Journal of Oral and Maxillofacial Surgery 76(4) (2018) 744-751.
[12] P.-C. Hsu, K.-K. Liao, K.-P. Lin, J.-W. Chiu, P.-Y. Wu, C.-L. Chou, N.-Y. Wang, J.-C. Wang, Comparison of Corticosteroid Injection Dosages in Mild to Moderate Idiopathic Carpal Tunnel Syndrome: A Randomized Controlled Trial, Archives of Physical Medicine and Rehabilitation 101(11) (2020) 1857-1864.
[13] R. Hasanein, W. El-Sayed, The effect of nebulized lidocaine hydrochloride on emergence from sevoflurane anesthesia in children undergoing Tonsillectomy, Egyptian Journal of Anaesthesia 29(4) (2013) 351-356.
[14] M. Kunaver, A. Anžlovar, E. Žagar, The fast and effective isolation of nanocellulose from selected cellulosic feedstocks, Carbohydrate Polymers 148 (2016) 251-258.
[15] M.D. Markovic, P.M. Spasojevic, S.I. Seslija, I.G. Popovic, D.N. Veljovic, R.V. Pjanovic, V.V. Panic, Casein-poly(methacrylic acid) hybrid soft networks with easy tunable properties, European Polymer Journal 113 (2019) 276-288.
[16] M.D. Markovic, V.V. Panic, S.I. Seslija, P.M. Spasojevic, V.D. Ugrinovic, N.M. Boskovic-Vragolovic, R.V. Pjanovic, Modification of hydrophilic polymer network to design a carrier for a poorly water-soluble substance, Polymer Engineering & Science n/a(n/a) (2020).
[17] M.D. Markovic, V.V. Panic, S.I. Seslija, A.D. Milivojevic, P.M. Spasojevic, N.M. Boskovic-Vragolovic, R.V. Pjanovic, Novel strategy for encapsulation and targeted delivery of poorly water-soluble active substances, Polymer Engineering & Science n/a(n/a).
[18] F. Favatela, M.F. Horst, M. Bracone, J. Gonzalez, V. Alvarez, V. Lassalle, Gelatin/Cellulose nanowhiskers hydrogels intended for the administration of drugs in dental treatments: Study of lidocaine as model case, Journal of Drug Delivery Science and Technology 61 (2021) 101886.
[19] G.P. Asnani, J. Bahekar, C.R. Kokare, Development of novel pH–responsive dual crosslinked hydrogel beads based on Portulaca oleracea polysaccharide-alginate-borax for colon specific delivery of 5-fluorouracil, Journal of Drug Delivery Science and Technology 48 (2018) 200-208.
[20] Y.-C. Chou, Y.-S. Cheng, Y.-H. Hsu, Y.-H. Yu, S.-J. Liu, Biodegradable nanofiber-membrane for sustainable release of lidocaine at the femoral fracture site as a periosteal block: In vitro and in vivo studies in a rabbit model, Colloids and Surfaces B: Biointerfaces 140 (2016) 332-341.
[21] A.T. Kola-Mustapha, D. Armitage, A.O. Abioye, Development of aqueous ternary nanomatrix films: A novel ‘green’ strategy for the delivery of poorly soluble drugs, International Journal of Pharmaceutics 515(1) (2016) 616-631.
[22] N. Mallick, M. Asfer, M. Anwar, A. Kumar, M. Samim, S. Talegaonkar, F.J. Ahmad, Rhodamine-loaded, cross-linked, carboxymethyl cellulose sodium-coated super-paramagnetic iron oxide nanoparticles: Development and in vitro localization study for magnetic drug-targeting applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects 481 (2015) 51-62.
[23] J.J. Chen, A.L. Ahmad, J.K. Lim, B.S. Ooi, Facile synthesis and characterization of thermo-magneto-responsive poly(N-isopropylacrylamide)-magnetite composite hydrogel and its adsorption-desorption study on chromium (III), Materials Chemistry and Physics 218 (2018) 39-50.