Primena metoda veštačke inteligencije u obnovljivim izvorima energije i energetskoj efikasnosti

##plugins.themes.bootstrap3.article.main##

Radiša Jovanović Ivan Božić

Apstrakt

Razvoj sistema koji koriste obnovljive izvore energije zahteva primenu sofisticiranih tehnika u cilju tačne procene raspoloživog energetskog potencijala i njihovog efikasnog upravljanja i optimizacije. Osnovna karakteristika metoda veštačke inteligencije je da one koriste računarske sisteme za izvršavanje zadataka koji zahtevaju inteligentno ponašanje, kao što su učenje, rasuđivanje, rešavanje problema i donošenje odluka u prisustvu neizvesnosti. To posebno može biti korisno u modelovanju, analizi, optimizaciji i predikciji performansi i upravljanju sistemima sa obnovljivim energijama i efikasnijoj upotrebi energije u termoenergetskim, termotehničkim i procesnim postrojenjima. Ovi sistemi su izrazito nelinearni, složeni i dinamički, gde osnovni fizički odnosi nisu u potpunosti razjašnjeni i gde su dostupni podaci često zašumljeni i/ili nekompletni. Višeparametarski i višekriterijumski aspekt u projektovanju ovih sistema nije lako tretirati primenom analitičkih metoda, fizičkih modela ili numeričkih metoda.  Metode veštačke inteligencije mogu da obezbede obećavajuću i pouzdanu alternativu, ili dopunu tradicionalnim determinističkim i statističkim prilazima koji se koriste u energetskoj efikasnosti i obnovljivim izvorima energije.  Ove metode omogućavaju izučavanje sistema bez ikakvog poznavanja tačnih relacija koje opisuju njihov rad, i jednom kada se obuče, dozvoljavaju izvršavanje složenih zadataka kao što su modelovanje, predikcija, identifikacija, optimizacija i upravljanje. Veštačke neuronske mreže, kao najčešće korišćena metodologija, i njihova primena u energetskoj efikasnosti i sistemima koji koriste obnovljive energije, tema su ovog rada.

##plugins.themes.bootstrap3.article.details##

Kako citirati
JOVANOVIĆ, Radiša; BOŽIĆ, Ivan. Primena metoda veštačke inteligencije u obnovljivim izvorima energije i energetskoj efikasnosti. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 31, n. 1, p. 63-81, june 2018. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/3449>. Datum pristupa: 10 dec. 2018 doi: https://doi.org/10.24094/ptk.018.31.1.63.
Sekcija
Energija u procesnoj industriji

Reference

[1] Perera K.S., Z. Aung, W. L. Woon, Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey. In: Woon W., Aung Z., Madnick S. (eds) Data Analytics for Renewable Energy Integration, DARE 2014, Lecture Notes in Computer Science, Volume 8817, Springer, Cham.
[2] Li, G., J. Shi, On comparing three artificial neural networks for wind speed forecasting, Applied Energy, Volume 87, issue 7, (2010), pp. 2313-2320.
[3] Grassi, G., P. Vecchio, Wind energy prediction using a two-hidden layer neural network, Communications in Nonlinear Science and Numerical Simulation, Volume 15, issue 9, (2010), pp. 2262–2266.
[4] Zhou, J., J. Shi, G. Li, Fine tuning support vector machines for short-term wind speed forecasting, Energy Conversion and Management, Volume 52, issue 4, (2011), pp. 1990-1998.
[5] Mohandes, M. A., T. O. Halawani, S. Rehman, A. A. Hussain, Support vector machines for wind speed prediction, Renewable Energy, Volume 29, issue 6, (2004), pp. 939-947.
[6] Kusiak, A., H. Zheng, Y. Song, Short-Term Prediction of Wind Farm Power: A Data Mining Approach, IEEE Transactions on Energy Conversion, Volume 24, issue 1, (2009), pp. 125-136.
[7] Mabel, M. C., E. Fernandez, Analysis of wind power generation and prediction using ANN: A case study, Renewable Energy, Volume 33, issue 5, (2008), pp. 986-992.
[8] Tagliaferri, F., I. M. Viola, R. G. J. Flay, Wind direction forecasting with artificial neural networks and support vector machines, Ocean Engineering, Volume 97, (2015), pp. 65-73.
[9] Barbounis, T. G., J. B. Theocharis, M. C. Alexiadis, P. S. Dokopoulos, Long-term wind speed and power forecasting using local recurrent neural network models, IEEE Transactions on Energy Conversion, Volume 21, no. 1, (2006), pp. 273-284.
[10] Lei, M., L. Shiyan, J. Chuanwen, L. Hongling, Y. Yan, A review on the forecasting of wind speed and generated power, Renewable and Sustainable Energy Reviews, Volume 13, issue 4, (2009), pp. 915-920.
[11] Chen, C., S. Duan, T. Cai, B. Liu, Online 24-h solar power forecasting based on weather type classification using artificial neural network, Solar Energy, Volume 85, issue 11, (2011), pp. 2856-2870.
[12] Paoli, C., C. Voyant, M. Muselli, M. N. Nivet, Forecasting of preprocessed daily solar radiation time series using neural networks, Solar Energy, Volume 84, issue 12, (2010), pp. 2146-2160.
[13] Chen, J. L., H. B. Liu, W. Wu, D. T. Xie, Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study, Renewable Energy, Volume 36, issue 1, (2011), pp. 413-420.
[14] Gutierrez-Corea, F. V., M. A. Manso-Callejo, M. P. Moreno-Regidor, M. T. Manrique-Sancho, Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations, Solar Energy, Volume 134, (2016), pp. 119-131.
[15] Jiménez-Pérez, P. F., L. Mora-López, Modeling and forecasting hourly global solar radiation using clustering and classification techniques, Solar Energy, Volume 135, (2016), pp. 682-691.
[16] Marquez, R., H. T. T. Pedro, C. F. M: Coimbra, Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs, Solar Energy, Volume 92, (2013), pp. 176-188.
[17] Aguiar, L. M., B. Pereira, M. David, F. Díaz, P. Lauret, Use of satellite data to improve solar radiation forecasting with Bayesian Artificial Neural Networks, Solar Energy, Volume 122, 2015, pp. 1309-1324.
[18] Long, H., Z. Zhang, Y. Su, Analysis of daily solar power prediction with data-driven approaches, Applied Energy, Volume 126, (2014), pp. 29-37.
[19] İzgi, E., A. Öztopal, B. Yerli, M. K. Kaymak, A. D. Şahin, Short–mid-term solar power prediction by using artificial neural networks, Solar Energy, Volume 86, issue 2, (2012), pp. 725-733.
[20] Wolff, B., J. Kühnert, E. Lorenz, O. Kramer, D. Heinemann, Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data, Solar Energy, Volume 135, (2016), pp. 197-208.
[21] Rana, M., I. Koprinska, V. G. Agelidis, 2D-interval forecasts for solar power production, Solar Energy, Volume 122, (2015), pp. 191-203.
[22] Božić, I., R. Jovanović, Standardni i savremeni pristupi u određivanju energetskih karakteristika velikih i malih hidroelektrana, 31. Međunarodni kongres o procesnoj industriji PROCESING ‘18, Savez mašinskih i elektrotehničkih inženjera i tehničara Srbije (SMEITS), Bajina Bašta, Srbija, 2018.
[23] Lachtermacher G., J. D. Fuller, Backpropagation in Hydrological Time Series Forecasting. In: Hipel, K. W., McLeod A. I., Panu U. S., Singh V. P. (eds), Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Water Science and Technology Library, Volume 10/3, Springer, Dordrecht, (1994), pp. 229-242.
[24] Raman, H., N. Sunilkumar, Multivariate modelling of water resources time series using artificial neural networks, Hydrological Sciences Journal, Volume 40, issue 2, (1995), pp. 145–163.
[25] Ochoa-Rivera, J. C., R. García-Bartual, J. Andreu, Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks, Hydrology and Earth System Sciences Discussions, European Geosciences Union, Volume 6, issue 4, (2002), pp. 641-654.
[26] Noori, N., L. Kalin, Coupling SWAT and ANN models for enhanced daily streamflow prediction, Journal of Hydrology, Volume 533, (2016), pp. 141-151.
[27] Hong, W. C., Rainfall forecasting by technological machine learning models, Applied Mathematics and Computation, Volume 200, issue 1, (2008), pp. 41-57.
[28] Hammid, A. T., M. H. B. Sulaiman, A. N. Abdalla, Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network, Alexandria Engineering Journal, Volume 57, issue 1, (2018), pp. 211-221.
[29] Li, G., Y. Sun, Y. He, X. Li, Q. Tu, Short-Term Power Generation Energy Forecasting Model for Small Hydropower Stations Using GA-SVM, Mathematical Problems in Engineering, Volume 2014, Article ID 381387, 9 pages, 2014.
[30] *** E. Council, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, Off. J. Eur. Union 18(201) (2010), 13–35.
[31] Jovanović, R., A. Sretenović, B. Živković, Ensemble of various neural networks for prediction of heating energy consumption, Energy and Buildings, (ISSN 0378-7788), Volume 94, (2015), pp.189-199.
[32] Zhao, H.-X., F. Magoulès, A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews, Volume 16, issue 6, (2012), pp. 3586-3592.
[33] Foucquier, A., S. Robert, F. Suard, L. Stéphan, A. Jay, State of the art in building modelling and energy performances prediction: A review, Renewable and Sustainable Energy Reviews, Volume 23, (2013), pp. 272-288.
[34] Ekonomou, L., Greek long-term energy consumption prediction using artificial neural networks, Energy, Volume 35, Issue 2, (2010), pp. 512-517.
[35] Li, Q., Q. Meng, J. Cai, H. Yoshino, A. Mochida, Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks, Energy Conversion and Management, Volume 50, issue 1, (2009), pp. 90-96.
[36] Li, Q., Q. Meng, J. Cai, H. Yoshino, A. Mochida, Applying support vector machine to predict hourly cooling load in the building, Applied Energy, Volume 86, issue 10, (2009), pp. 2249-2256.
[37] Dong, B., C. Cao, S. E. Lee, Applying support vector machines to predict building energy consumption in tropical region, Energy and Buildings, Volume 37, issue 5, (2005), pp. 545-553.
[38] Ahmad, A. S., M. Y. Hassan, M. P. Abdullah, H. A. Rahman, F. Hussin, H. Abdullah, R. Saidur, A review on applications of ANN and SVM for building electrical energy consumption forecasting, Renewable and Sustainable Energy Reviews, Volume 33, (2014), pp. 102-109.
[39] Karatasou, S., M. Santamouris, V. Geros, Modeling and predicting building's energy use with artificial neural networks: Methods and results, Energy and Buildings, Volume 38, issue 8, (2006), pp. 949-958.
[40] Li, K., H. Su, J. Chu, Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study, Energy and Buildings, Volume 43, issue 10, (2011), pp. 2893-2899.
[41] Jovanović, Ž. R., A. Sretenović, B. Živković, Application Of Artificial Neural Networks For Prediction Of Heating Energy Consumption In University Buildings, Proceedings 18th International Research/Expert Conference “Trends in the Development of Machinery and associated Technology” TMT 2014, ISSN 1840-4944, pp. 229-232, Budapest, Hungary, 10-12th September 2014.
[42] Jovanović, Ž. R., A. Sretenović, B. Živković, Prediction Of Heating Energy Consumption In University Buildings Based On Simplified Artificial Neural Networks, Proceedings 18th International Research/Expert Conference “Trends in the Development of Machinery and associated Technology” TMT 2014, ISSN 1840-4944, pp. 213-216, Budapest, Hungary, 10-12th September 2014.
[43] Jovanović, Ž. R., A: Sretenović, B. Živković, Application of Artificial Neural Networks for the Prediction of Heating Energy Consumption for University Campus, 45th International HVAC&R Congres, printed CD pp 71, ISBN/ISSN 978-86-81505-75-5, SMEITS, Belgrade, 3-5th December 2014.
[44] Jovanovic, Ž. R., A. Sretenović, Various multistage ensembles for prediction of heating energy consumption, Modeling Identification and Control, Volume 36, No.2, (2015), pp.119-132.
[45] Jovanović, Ž. R., A: Sretenović, B. Živković, Multistage ensemble of feedforward neural networks for prediction of heating energy consumption, Thermal Science, Volume 20, No.4, (2016), pp. 1321-1331.
[46] Jovanović Ž. R., A. Sretenović, Ensemble of radial basis neural networks with k-means clustering for heating energy consumption prediction, FME Transactions, Volume 45, No.1, (2017), pp. 51-57.
[47] Sretenović, A., R. Ž. Jovanović, V. M. Novaković, N. M. Nord, B. D. Živković, Support vector machine for the prediction of heating energy use, Thermal Science, (2018), online first, doi: https://doi.org/10.2298/TSCI170526126S.
[48] Kumar, R., R. K. Aggarwal, J. D. Sharma, Energy analysis of a building using artificial neural network: A review, Energy and Buildings, Volume 65, (2013), pp. 352-358.
[49] Müller, K. R., A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik, Predicting time series with support vector machines, In: Gerstner W., Germond A., Hasler M., Nicoud JD. (eds) Artifical Neural Networks — ICANN'97, ICANN 1997, Lecture Notes in Computer Science, Volume 1327, Springer, Berlin, Heidelberg, pp. 999-1004.
[50] Smola, A. J., B. Schölkopf, A tutorial on support vector regression, Statistics and Computing, Volume 14, issue 3, pp. 199—222.
[51] *** Elia, Belgium’s electricity transmission system operator, http://www.elia.be/en/grid-data/power-generation/wind-power
[52] *** Solar Radiation Monitoring Laboratory, University of Oregon, USA, http://solardat.uoregon.edu/index.html
[53] *** Hidrološki godišnjaci - površinske vode od 2004. do 2014, Republički hidrometeorološki zavod Republike Srbije, 2005-2014, http://www.hidmet.gov.rs/ciril/hidrologija/povrsinske_godisnjaci.php
[54] Hornik, K., M. Stinchcombe, H. White, Multilayer feedforward neural networks are universal approximators, Neural Networks, Volume 2, (1989), pp. 359–366.